January 2003 D(1) # APPENDIX D # **Table of Contents** | Paragraph | Page | |--|------| | D-000 Technical Specialist Assistance | | | D-001 Scope | D1 | | D-100 Section 1 Deciding Whether Technical Specialist Assistance is Ne | eded | | D-101 General | D1 | | D-102 Audit Steps | D1 | | D-102.1 Labor Estimating Systems General | D2 | | D-102.2 Labor Estimating Standard Time Method | D2 | | D-102.3 Labor Estimating Methods Cost and Time Relationships | | | (Parametric) | D3 | | D-102.4 Labor Estimating Other Methods | D3 | | D-102.5 Material Estimating | D4 | | D-200 Section 2 Procedures for Requesting Technical Specialist Assista | ınce | | D-201 General | D5 | | D-202 Timeliness | D5 | | D-203 Sources of Technical Assistance | D5 | | D-204 Method of Requesting Assistance | D5 | | D-205 Formulating Questions | D5 | | D-205.1 Example Questions Labor | D6 | | D-205.2 Example QuestionsMaterial | D7 | | Figure D-2-1 Pro forma Request for Technical assistance Labor Example | D8 | | Figure D-2-2 Pro Forma Request for Technical Assistance Material | | | Example | D9 | | D-300 Section 3 Evaluation, Use, and Impact of the Results of Governm
Technical Specialist Assistance | ient | | D-301 Introduction | D10 | | D-302 General | D10 | | D-303 Scope of Audit and Results of Audit Examples | D11 | | D-304 Reporting Technical Qualifications in Explanatory Notes | D13 | | D(2) January | 2003 | |---|------| | Paragraph | Page | | D-400 Section 4 Cost Estimating Methods | | | D-401 Introduction | D15 | | D-402 Overview of Cost Estimating | D15 | | D-403 Estimating Process at a Typical Contractor | D15 | | D-404 Government Regulations | D17 | | D-405 Types of Cost Estimating | D17 | | D-406 Validation of the Cost Estimating Method | D18 | | D-407 Labor Cost Estimating Methods | D19 | | D-407.1 Overview | D19 | | D-407.2 Labor Estimating Methods | D21 | | D-407.3 Work Measurement Techniques | D25 | | D-407.4 Military Standard (MILSTD) 1567A | D27 | | D-408 Material Cost Estimating Methods | D29 | | D-408.1 Overview | D29 | | D-408.2 Estimating Methods | D31 | | D-408.3 Bills of Materials (BOM) | D31 | | D-408.4 Routing Sheets | D32 | | D-408.5 Engineering Drawings | D32 | | D-408.6 Material Allowances | D32 | | D-408.7 Estimating Raw Material | D34 | | Figure D-4-1 Ascending Order Bill of Material | D35 | | Figure D-4-2 Assembly/Subassembly Bill of Material | D36 | | Figure D-4-3 Assembly/Subassembly "Indented" Bill of Material | D37 | | Figure D-4-4 Example of a Routing Sheet | D38 | | Figure D-4-5 Example of an Engineering Drawing | D41 | | Figure D-4-6 Example of a Raw Material Drawing | D43 | #### APPENDIX D #### **D-000 Technical Specialist Assistance** #### D-001 Scope This appendix presents guidance to assist in (1) deciding if technical specialist assistance is needed, (2) identifying the specific type of assistance needed, (3) requesting the assistance, (4) achieving good communications with technical specialists, (5) assessing the impact of technical specialist findings upon the audit opinion, and (6) reporting on the use of technical specialists or the impact of their non-availability. #### D-100 Section 1 --- Deciding Whether Technical Specialist Assistance is Needed #### **D-101 General** - a. Assistance from technical specialists may be required in a wide range of audit activities. This guidance focuses on one of the main areas, the evaluation of price proposals. Typically, contractor proposals are comprised of estimates for direct material, direct labor, other direct costs, and indirect costs. The auditor is responsible for evaluating all aspects of these cost estimates and advising the contracting officer on whether they are reasonable and in compliance with applicable cost principles and standards. - b. An important aspect of a proposal evaluation is determining the reasonableness of the quantities for material and labor. Audit tests of this aspect often require the assistance of technical specialists. - c. While the acquisition command or the contract administration office may initiate technical specialist reviews independent of the audit request, auditors cannot presume this review will anticipate and provide all the technical assistance needed to support the auditor's analysis. Statement on Auditing Standards (SAS) No. 73, "Using the Work of a Specialist," requires auditors to exercise professional judgment when the work of a specialist is required, including a determination of the type of technical expertise needed, and provides guidance on using the specialist's findings. It notes that while the appropriateness and reasonableness of methods or assumptions used and their application are the responsibility of the specialist, the auditor should obtain an understanding of these matters to deter- mine whether the findings are suitable for corroborating the cost representations. - d. The auditor is also required to make appropriate tests of accounting data provided to and used by the specialist. Documentation requirements are in 4-1000. Ordinarily, the auditor would use the work of the specialist unless the procedures lead him/her to believe that the findings are unreasonable in the circumstances. - e. Successful implementation of this guidance requires establishing a close working relationship with the cognizant ACO and technical specialist. The FAO manager should discuss the basis for this guidance with these individuals to promote proper understanding of its objective of improving audit quality and to dispel concerns regarding duplication of efforts, roles, and missions. # **D-102 Audit Steps** - a. This section provides audit steps to help the auditor decide if technical specialist assistance is needed. Before applying these audit steps, consider materiality, for both the total amount involved and for the individual cost items, and the contemplated contract type. - b. The following audit steps are intended to provide sufficient information for making an informed decision, and to help formulate the questions to be addressed by the technical specialist. They may best be performed as part of an estimating system survey or other separate assignment (such as, validation of labor standards, or examination of material requirement systems). Also, familiarity with the information contained in D-407 and D-408 may be necessary to properly understand some of these audit steps. #### D-102.1 Labor Estimating Systems ---General Section D-407 describes seven labor estimating methods that might be used by a contractor. The methods vary significantly in terms of the accuracy of the cost estimates they produce. Specific audit steps to help decide if assistance should be requested follow: - a. Gain some familiarity with the product or service. The best way to do this is by observing manufacturing processes or services for the product or a like product. - b. Identify the specific labor estimating method(s) used in preparing the proposal. This information should be contained in the proposal, but may have to be obtained from the contractor. - c. If the labor estimating technique used is based on historical data, determine if its use is appropriate or whether another technique (e.g., one based on industry production standards) should be used for greater estimating accuracy/reliability (see D-407 and 9-503). This is done by: - (1) Identifying the historical data used to develop the labor cost estimate. - (2) Ascertaining the reliability and accuracy of the data. Audits of timekeeping and labor charging practices performed previously may provide the needed level of understanding and confidence. - (3) Evaluating the content of the data to ensure that it is representative and contains all costs that are purported to be there. Compare supporting data to other sources of historical information such as operational staffing. Inconsistencies may indicate exclusions of pertinent historical data. Determine whether there are valid reasons for excluding data. - (4) Testing for the consistency of data accumulation over a given period. Look for accounting system changes and reclassification of costs from direct to indirect and vice versa, and consider the results of previous cost accounting standard (CAS) audits. If the data is inconsistent (either historically or prospectively), request the contractor make appropriate adjustments. - (5) Ensuring that nonrecurring costs are removed from historical data. Pay special attention to manufacturing set up costs which are lot quantity sensitive. Other nonrecurring costs may be in the historical period, but not expected to occur in the forecast period. These costs should not be used to estimate future costs. - (6) Ensuring that other nonrepresentative data is excluded. For example, some historical inefficiencies may not be expected to recur. Likewise, some historical events are unique and should not be used as a basis for predicting future costs. - (7) Making sure the data is current. Data which is too old may not reflect expected conditions (e.g., facilities, equipment, management, organization, and staffing). Several years of historical data may be useful in identifying important trends. - (8) Ensuring that historical data is obtained from the same facility in which the proposed end item or product will be manufactured. If the data was obtained from a different facility, determine its acceptability for estimating purposes. - (9) Drawing a conclusion regarding the suitability of historical data for making estimates. # D-102.2 Labor Estimating --- Standard Time Method The standard time method is the most accurate of the seven labor estimating methods described in D-407.2. Labor estimates computed using this method consists of labor standards adjusted by productivity factors. The following audit steps address labor standards and
productivity factors separately. Before performing any of the recommended audit steps, contact the ACO/PCO to determine if any work in this area is being performed by other government representatives. Technical specialist assistance, if needed, should be obtained from the ACO/PCO (see D-203). - a. Labor Standards - (1) Determine if MILSTD 1567A (D-407.4) is applicable to the contractor's proposal. When applicable, determine if the government has accepted, disapproved, or partially accepted the contractor's work measurement system. (2) If MILSTD 1567A applies and the system has been accepted, the auditor can normally have confidence that engineered labor standards (ELSs) can be produced. If the system has been disapproved or partially accepted, determine the reasons for this condition. Depending upon the severity of the condition, the auditor may have to qualify the audit opinion. (3) If MILSTD 1567A does not apply, determine the method used by the contractor to develop labor standards. If the contractor advises that ELSs were used, verify that one of the work measurement techniques described in D-407.3 (stopwatch time studies, predetermined time systems, work sampling, standard data systems) was employed. The recommended procedure is to obtain a sample of parts and verify the computation of labor standards. If the contractor indicates nonuse of ELSs, consider the results unreliable until tested. Evaluate the identified technique, determine its reasonableness, and establish the impact on proposed costs to the extent possible. - (4) When evaluating the use of labor standards, verify that standards developed for specific operations or manufacturing steps are appropriately applied. This can be accomplished by selecting a sample of part number routing sheets and verifying labor standards contained on the routing sheets to supplemental sources of information on labor standards maintained by the contractor. If routing sheets are not available, look for similar descriptions of manufacturing processes containing labor standards. - (5) Other possible problem areas are duplication of estimated labor, use of adjustment factors, and computational errors. The recommended method to test for the occurrence of these errors is to request routing sheets (see D-407.2h) and/or other documentation supporting the labor cost buildup for a high level component part. Verify that alternate routings were not inadvertently included in computations, adjustment factors were not used, and calculations are correct. - b. Productivity Factors - (1) Verify that productivity factors applied to labor standards were derived from historical data for the actual or like product. Productivity factors are most accurate when applied at a low organizational level (e.g., welding, numerical control machine operation, etc.). Inappropriately applied productivity factors will produce inaccurate labor cost estimates. (2) Productivity factors are derived by dividing labor standards by actual labor. When a contractor changes its method of computing labor standards, the accuracy of productivity factors may be affected. Ascertain whether any changes in method have occurred. If so, work through several productivity factor calculations to determine the impact of the change. # **D-102.3 Labor Estimating Methods ---**Cost and Time Relationships (Paramet- As explained in D-405, parametric cost estimating is a technique that estimates future costs by statistically analyzing and manipulating historical cost relationships (D-407.2g). The primary justification for using parametrics is reduced estimating and negotiation costs. When a contractor uses parametric cost estimating relationships, the contractor is expected to demonstrate that the relationships are logical, verifiable, statistically valid, and fairly accurate in predicting results. The relationships used should also be periodically monitored by the contractor to ensure appropriateness. Audit steps designed to evaluate parametric cost estimates will ensure that the contractor can indeed demonstrate its estimates meet the above criteria. In addition, the audit steps listed in D-102.4 apply to parametric cost estimates. ### D-102.4 Labor Estimating --- Other Methods The following audit steps should be performed for labor estimating methods other than the standard time method. These methods are: - (1) judgment and conference, - (2) comparison, - (3) unit method, - (4) factor method, - (5) probability approaches, and - (6) cost and time estimating relationships. Judgment and conference is the least accurate of these methods. The others yield progressively more accurate labor cost estimates, but not as good as those produced by the standard time method. (See D-407.2 for further explanation of these labor estimating methods.) Contractors may combine two or more of these methods to produce labor cost estimates. a. Review the information in D-407 relevant to the specific method employed by the contractor. - b. Scrutinize historical data used to develop the labor cost estimates. Pay special attention to the factors identified in D-102.1c. - c. Identify the method, including rationale supporting use of the technique, historical evidence of the accuracy of the method, assumptions, adjustments made, etc. - d. Validate some of the calculations by working through the estimate. - e. Note discrepancies. Try to establish the cost impact of these discrepancies. #### **D-102.5 Material Estimating** Section D-408 describes material estimating methods, of which the use of the "bill of material" or BOM to establish material cost estimates is the most common. Routing sheets and engineering drawings are also important to the auditor in verifying material quantities. Specific audit steps related to material estimates follow: a. Become thoroughly familiar with the requirements of the RFP and the contents of the contractor's proposal. - b. Obtain the engineering BOM that supports the contractor's proposal. For audit purposes, engineering BOMs are normally preferable to "manufacturing" BOMs because of their correspondence to engineering drawings. BOMs are sorted different ways to accommodate different users and purposes. The two most common sorts are ascending part number and assembly/subassembly. Next assembly or "where used" information is usually also available and in most cases quite useful to the auditor. - c. If the auditor intends to select a manual sample of parts, obtain a priced ascending/descending order BOM as it is usually a necessity. To allow for a proper evaluation, next assembly information should be part of this BOM, or available in a supplemental document. d. If BOM detail part records are computer-based, the BOM obtained may be either ascending/descending part number or assembly/subassembly as long as it is priced. For mechanized sample selection, the preferred method is to use an available software tool. DCAA sample selection software includes DATATRAK III and the Electronic Selection Programs (ESP). e. Prepare a sampling plan. Select either a random stratified or dollar unit sample of parts for evaluation. Guidance on sampling methods is contained in Appendix B. Although the sample is intended for use in validating BOM quantities to engineering drawings, the sample should also be used to validate pricing. Validation of parts pricing should usually be accomplished as a separate phase of the audit. - f. Obtain detailed engineering drawings for selected sample BOM parts. Separate engineering drawings may not be available for purchased parts, but may be available as part of the next higher assembly drawing. Also, initial BOMs may be incomplete and contain pseudo-parts which do not have engineering drawings. A large number of pseudo-parts is usually sufficient reason to obtain the assistance of a technical specialist. - g. Compare sample part quantities on engineering drawings to the BOM. - h. Identify how the contractor calculated part quantities and the number of parts to be produced from raw material. Pay special attention to the use of rounded factors for raw material. Verify the accuracy of the contractor's calculations by working through several part estimates. - i. Typically, engineering drawings are frequently changed. Depending upon the date of revision and other factors, there is danger that changes may not have been incorporated into the BOM. Audit tests should include an evaluation of engineering change notices (ECNs) to determine if any in-process ECNs have not been included in the BOM. The date of the last revision on the engineering drawing may be beneficial in identifying potential omissions. - j. Quantity and computational discrepancies identified during the material requirements evaluation of sample BOM parts should be projected to the entire BOM population to assess impact. # D-200 Section 2 --- Procedures for Requesting Technical Specialist Assistance # **D-201** General In this section, the procedures for requesting technical specialist assistance in price proposal evaluations are described. Requests for technical assistance should be very specific to avoid miscommunication and improve the probability of obtaining meaningful evaluations. Examples of questions that might be directed to a technical specialist are also contained in this section. #### **D-202 Timeliness** Auditors must concentrate on analyzing contractor support for labor hours and material quantities in the initial stages of the audit evaluation. This analysis should include an early identification of cost estimating techniques used by the contractor, and evaluation of supporting data. #### **D-203 Sources of Technical Assistance** Government engineers working directly for the acquisition command or administrative contracting officer have primary responsibility for performing technical analyses of contractor pricing submissions. Accordingly, this group of people should be contacted when the auditor requires technical assistance in a
proposal evaluation. #### **D-204 Method of Requesting Assistance** a. If possible, requests for technical specialist assistance should initially be handled verbally (with appropriate written follow-up documentation). The auditor should attempt to make requests in person at FAOs having onsite engineers. For offices without onsite engineering support, telephone requests for assistance are usually appropriate. These procedures will promote a closer working relationship between the auditor and others responsible for proposal evaluation, and improve chances for a timely response. A written request should be transmitted to the acquisition command or contract administration office. A request must be made even when the auditor is satisfied with the scope of planned technical evaluation and also when the auditor is told that the results of a planned technical evaluation will not be furnished. If a pattern of untimely or nonavailability of government technical support is encountered, the matter should be elevated to the regional office for discussion with the appropriate acquisition management officials. Headquarters (ATTN: O) should be notified of unsatisfactory conditions which cannot be resolved by the regional director. b. Figures D-2-1 and D-2-2 present examples of audit requests for government technical specialist assistance. These examples should be used as guidelines and modified as necessary to reflect specific conditions identified by the auditor. Coordination and follow-up of requests are essential. Nonreceipt of a requested technical evaluation requires a qualification in the resulting audit report. # **D-205 Formulating Questions** a. Once a decision has been made to request assistance from a technical specialist, focus on identifying exactly what information is needed. The third statement of Standards of Field Work requires that the auditor obtain sufficient, competent, and relevant evidence to afford a reasonable basis for an opinion. This evidence may appropriately include the work of a technical specialist; however, the responsibility for meeting this requirement cannot be transferred. b. SAS No. 73 provides guidance regarding the use of specialists in performing an examination of accounting records in accordance with GAGAS. It requires that the auditor be specific in identifying the nature of work to be performed by the technical specialist. Preferably, this statement of work should include (1) the scope and objectives of the work, (2) the methods and assumptions to be used by the specialist, (3) a description of how the auditor will use the specialist's work to support assertions made in the cost statements, and (4) the form and content the specialist's report should take. D6 January 2003 D-205 c. Specific questions for technical specialists should correspond to individual audit steps expected to be performed, and address each element for which the auditor could not make an independent assessment. In formulating questions, describe in detail tests performed and/or reasons for questioning an aspect of the cost estimate. The remainder of this section contains examples of questions that might be directed to a technical specialist. #### **D-205.1 Example Questions --- Labor** #### a. Judgment and Conference "Because of a lack of historical information, the contractor estimated direct labor hours for its automated assembly line using judgment only. An evaluation of the judgmental estimate revealed no auditable supporting data in which the auditor could place confidence. Accordingly, the assumptions used to develop the contractor's position need to be evaluated by an engineer knowledgeable in the area. Results of this technical analysis should be provided to the auditor for evaluation and determination of the impact upon audit scope and conclusions." # b. Comparison "The contractor multiplied all historical data supporting proposed direct engineering labor hours by a factor of 2.0 because of the belief that the program being estimated will have twice as many configuration changes as previously experienced. Supporting data for this factor could not be obtained by the auditor. Both the magnitude of anticipated configuration changes and the manner in which the contractor estimated their influence on cost need to be assessed by an engineer. Results of this technical analysis should be provided to the auditor for evaluation and determination of the impact upon audit scope and conclusions." # c. Unit Method "The contractor estimated maintenance/cleaning labor using a unit measure of `hours per square foot of floor area to be cleaned.' This unit measure was developed from the contractor's experience at five small office facilities. The building to be cleaned (under this contract) is a multistory office building seven times larger than any of the office facilities used to develop this rate. The auditor has verified the accuracy of composite rate development. However, we believe that the contractor should realize some gain in efficiency due to the large facility size. Accordingly, we request that an engineer develop an adjustment factor to compensate for efficiency gains. Results of this technical analysis should be provided to the auditor for evaluation and determination of the impact upon audit scope and conclu- #### d. Factor Method "The contractor estimated electrical assembly final test labor as a percentage of basic factory labor using data from five previous contracts. The contractor requested and received considerable funds to procure special test equipment to automate these operations for the contract being estimated. No similar automation effort was undertaken on the previous contracts. By using unadjusted history, the contractor has not given consideration to the impact automation in estimating assembly final test labor. The auditor was unable to locate information to develop an adjustment for this change in production methods. We request that an engineer estimate an appropriate adjustment for this labor category. Results of this technical analysis should be provided to the auditor for evaluation and determination of the impact upon audit scope and conclusions." # e. Probability Approaches "The contractor used a computer program to derive its probability estimate that it is 75 percent certain that it will take 365 staff days to construct a test stand. Activity interrelationships and time estimates were computer program inputs. Audit substantiated the time es- January 2003 D7 timates. We request that an engineer (1) determine if the contractor has properly represented interrelationships and (2) evaluate the computer algorithm used to produce the estimate. Results of this technical analysis should be provided to the auditor for evaluation and determination of its impact on audit scope and conclusion." #### f. Cost and Time Estimating Relationships "The contractor's cost estimating relationships (parameters) for wire harness assemblies were based on a regression analysis of past program experience to quantity of connectors per assembly. Audit of this regression application indicated a poor coefficient of determination (.51). However, the auditor could not identify possible alternative variables for consideration in refining the regression model. We request that an engineer assess the reasonableness of the cost estimating relationships for estimating future costs. Results of this technical analysis should be provided to the auditor for evaluation and determination of the impact upon audit scope and conclusions.' # g. Standard Time Method ## (1) Labor Standards "Audit disclosed that the contractor's estimate of recurring manufacturing labor hours was based on "industry average" labor standards, not engineered labor standards (ELSs). Although the contractor has not been accumulating data to develop its own labor standards, we believe that it has the capability, and should be encouraged to develop ELSs for use in future proposal submissions. Regarding the current proposal, we request that an engineer evaluate the reasonableness of the individual labor standards identified below. Results of this technical analysis should be provided to the auditor for evaluation and determination of the impact upon audit scope and conclusions." # (2) Productivity Factors "The contractor's proposed productivity factor of .25 is based on composite experience from six programs whose individual productivity factors range from .85 to .08. Audit substantiated the development of the individual factors (see the enclosed schedule). Since the six programs are similar, we believe that only current experience should be used in estimating future productivity. We request that an engineer determine the appropriateness of using a composite factor derived from multiple programs covering several years in lieu of current productivity experience. Results of this technical analysis should be provided to the auditor for evaluation and determination of the impact upon audit scope and conclusions." ### **D-205.2 Example Questions---Material** ## a. Bill of Material "Proposed material quantities for raw material, hardware, and purchased parts were derived from a mechanized bill of material (BOM). We statistically sampled this BOM and traced proposed quantities back to engineering drawings. Since this proposal is for a new product, formal drawings were not available on several parts. Therefore, we were unable to validate the need for certain parts or the required quantities. The items in question, along with related engineering drawing references, are enclosed. We request that they be evaluated by an engineer, and the results provided to the auditor for incorporation into the audit report." # b. Material Scrap Factor "The contractor's method for estimating material scrap does not provide for improvement resulting from learning. The scrap factor was derived from production history for similar products. We have verified the data used to compute the scrap
factor. However, it is our opinion that scrap should decrease over time as manufacturing personnel become more familiar with the product and operations required to produce it. We request that an engineer review this factor to determine its reasonableness. Results of this technical analysis should be provided to the auditor for evaluate and determination of the impact upon audit scope and conclusions." ## Figure D-2-1 Pro forma Request for Technical assistance Labor Example TO: Administrative Contracting Officer [or Other Audit Requestor] SUBJECT: Request for Technical Specialist Assistance, Proposal As part of our audit of the subject price proposal, we have examined the estimating rationale used in calculating proposed direct manufacturing labor hours. In estimating this cost element, the contractor used plant-wide labor standards adjusted by a productivity factor resulting from experience on the XYZ contract. The contractor then judgmentally applied a 20 percent complexity factor to reflect the impact of this newly proposed product. We request that an engineer review the reasonableness of the following items: - 1. The proposed 20 percent complexity adjustment factor. - 2. The benefit of past learning on the proposed labor estimates. The auditor plans to apply a learning curve technique. - 3. The proposed in-house labor standards for recurring manufacturing labor for: - a. Item 1 --- Set up 1.097; Run 453.301 - b. Item 2 --- Set up 212.5; Run 63.511 - c. Item 3 --- Set up 312.4; Run 75.551 We further request that the technical specialist's review results be furnished to us as soon as possible for incorporation into our audit. Our audit report is due by _______. If the technical specialist's review results cannot be provided by _______, we request that the audit report due date be revised to permit consideration of the technical findings. # Figure D-2-2 Pro Forma Request for Technical Assistance Material Example | 10: Administrative Contracting Officer [or Other Audit Requestor] | |---| | SUBJECT: Request for Technical Specialist Assistance, Proposal | | As part of our audit of the subject price proposal, we have sampled certain materia costs for detailed analysis. During our evaluation of the sampled items, we attempted to validate proposed quantities and prices. As part of this validation process, we traced sample part quantities back to originating engineering drawings and related supporting documents. However, we were unable to validate whether the drawings reviewed accurately reflect the item(s) to be furnished, or that the parts are required. The items in question are summarized as Enclosure 1 to this memorandum. We request that an engineer review each of these items to determine (1) item necessity, (2) required quantity, and (3) the propriety of the contractor's proposed quality level. We request that the results of this technical review be furnished to us as soon as possible. | | In addition, the contractor proposed use of a historical scrap factor. Since this proposa is for production of a product similar to those produced in the past, it is our opinion that the factor should be adjusted for the impact of learning. We further request that an engineer review this matter and provide an opinion on whether reductions from learning mabe reasonably expected in the circumstances. If so, we will ask the contractor to revise the estimates. | | Our audit report is due by If the results of the technical specialist review cannot be provided by, we request that the audit report due date be revised to permit consideration of the findings. | ## D-300 Section 3 --- Evaluation, Use, and Impact of the Results of Government Technical Specialist Assistance #### **D-301 Introduction** The procedures discussed in this section regarding the evaluation, use, and impact of the results of government technical specialist assistance apply to those reports received as a result of a DCAA request for assistance. Procedures associated with the evaluation of work of others, excluding government technical specialists, are discussed in 4-1000. #### D-302 General - a. An auditor requests a technical specialist's analysis when complex or subjective audit areas are encountered requiring special skills. Examples include but are not limited to: (1) valuation, (2) determination of physical characteristics relating to quantity or condition, (3) determination of amounts by using specialized techniques or methods, and (4) interpretation of technical requirements, regulations, or agreements. When technical specialist findings are used, the auditor should quantify the dollar effect of the technical findings in the audit report and to attach an electronic or scanned version of the technical analysis to the audit report. - b. When the auditor requests the services of a government technical specialist, the auditor must identify the work to be performed (see D-205). - c. It is the auditor's responsibility to examine the technical evaluation report to ensure a reasonable understanding of the actual work performed. The auditor's working papers must document (1) the auditor's understanding of the actual work performed, and (2) the degree of reliance the auditor placed on the technical evaluation, including its impact on the results of audit. Use the work of the specialist(s) unless findings are obviously unrealistic, or procedures used appear inadequate. In these situations, try to reconcile differences with the specialist and, if necessary, his/her supervisor and the ACO. A discussion of procedures and technical aspects of the evaluation is usually sufficient to eliminate concerns. If the differences are not resolved, the auditor should not use results of the technical evaluation in the audit opinion or the development of questioned costs. In such cases, include in the audit report an explanation of the reason(s) why the auditor did not use the technical recommendations. Adequately describe the circumstances, including the technical specialist's final position, and properly qualify the related audit conclusion. Whenever a technical evaluation is received, attach the report to the audit report as the final appendix. - d. Generally Accepted Government Auditing Standard (GAGAS) 6.46 requires that "sufficient, competent, and relevant evidence is to be obtained to afford a reasonable basis for the auditor's and conclusions." findings Under GAGAS 6.59, when such evidence has not been obtained the auditor may "use the data, but clearly indicate . . . the data's limitations." When evaluations of labor hours and material quantities which materially impact the proposed costs have not been performed by either the auditor or a technical specialist, insufficient evidential matter has been obtained to support the audit opinion. The inability to obtain essential information constitutes a scope limitation which necessitates an opinion qualification. - e. When necessary government technical assistance has not been received, and the adverse impact on the audit results is material, the auditor should: - Report the lack of technical assistance in the "Scope of Audit" section of the report under the subheading "Qualifications" (see examples in D-303). - Qualify the audit opinion in the "Results of Audit" section of the report (see examples in D-303). - Identify in the explanatory notes to the "Results of Audit" the specific cost elements or factors for which an opinion could not be rendered (see examples in D-304). - Highlight the lack of technical assistance in the "Executive Summary" January 2003 D11 D-303 section of the report under the subheading "Significant Issues," if the impact is significant (see 10-304.2). f. The qualification in the "Scope of Audit" section should (1) briefly describe the nature of the qualification, (2) state the adverse impact on the scope and results of audit, and (3) specifically refer to the report page number, exhibit, schedule or appendix paragraph which contains the detailed discussion of the circumstance. Additionally, include a brief statement to (1) indicate the reason for nonreceipt of the technical evaluation, (2) comment on the follow-up action taken to obtain the report from the organization involved, and (3) recommend that the auditor be given an opportunity to: (a) evaluate the technical results to determine the impact on the audit and (b) provide a supplemental report (see 10-210.4). g. Instances where audit scope has been substantially restricted due to lack of technical assistance may require an adverse report opinion or a disclaimer of opinion (see 9-212.3). Make this determination based on the auditor's best judgment. h. Do not segregate questioned costs between audit and technical findings in the exhibits and schedules of the audit report. However, provide this information in the explanatory notes. # D-303 Scope of Audit and Results of Audit Examples a. Example No. 1 - Labor. (Labor examples 1 and 2 assume no other cost or pricing data or CAS problems were noted during the audit.) In example 1, a recommendation is made that negotiations not be concluded until results of technical evaluation of
a proposed 20 percent complexity factor have been considered. Refer to 10-210.4 and 10-304.4 (Qualifications) and 10-210.5 and 10-304.5 (Results of Audit) for further guidance on what to include in the following report sections. # (1) Qualifications "We were unable to determine the reasonableness of the 20 percent complexity factor applied to the manufacturing direct labor hours. Refer to Results of Audit, page __, Note ___ for a detailed discussion of these costs. On November 4, 20XX, we requested technical assistance from [name of organization]. We have not received the technical report. On December 1, 20XX, we contacted the [name of organization and title of representative] who informed us that the evaluation is in process. We anticipate receipt of the technical report on or about December 15, 20XX. An extension of our audit report due date was requested on December 1, 20XX, but was not granted due to [state reason]. The technical results are considered essential to the evaluation of proposed labor costs. Therefore, the results of audit are qualified to the extent that additional costs may be questioned based on technical evaluation. If the technical report materially impacts our audit findings and contract negotiations have not been completed, we will issue a supplemental report incorporating the results of the technical evaluation." ## (2) Results of Audit "In our opinion, the offeror has submitted adequate cost and pricing data. The proposal was prepared in accordance with applicable Cost Accounting Standards and appropriate provisions of FAR and the DoD FAR Supplement (DFARS) [for non-DoD agencies, identify the specific agency supplement, if any (see 15-102.3)]. Nevertheless, in our opinion, costs associated with the 20 percent complexity factor discussed in the Qualifications section of the report are significant enough to materially impact the results of the audit. Therefore, as discussed with [name and title of contracting officer or representative] by [auditor] of our office on [date], we recommend that contract price negotiations not be concluded until the results of the technical evaluation of the 20 percent factor are considered by the contracting officer." b. Example No. 2 - Labor. (This differs from Example No. 1 in that no recommendation is made to delay negotiations until technical information has been considered.) #### (1) Qualifications "We were unable to determine the reasonableness of the 20 percent complexity factor applied to manufacturing direct labor hours. Refer to Results of Audit, page __, Note __, for a detailed discussion of these costs. On November 4, 20XX, we requested technical assistance from [name of organization] to evaluate these costs. We have not received the technical report. On December 1, 20XX, we contacted the [name of organization and title of representative] who informed us that the evaluation is in process. We anticipate receipt of the technical report on or about December 15, 20XX. The results of audit are qualified until we receive the technical report and determine its impact on this audit. If contract negotiations have not been concluded at that time and the technical report's findings materially impact our audit recommendations, we will issue a supplemental report incorporating the results of the technical evaluation." # (2) Results of Audit "In our opinion, the offeror has submitted adequate cost or pricing data. The proposal was prepared in accordance with applicable Cost Accounting Standards and appropriate provisions of FAR and the DoD FAR Supplement (DFARS) [for non-DoD agencies, identify the specific agency supplement, if any (see 15-102.2)]. Except for the judgmental 20 percent complexity factor applied to manufacturing direct labor, we believe that the proposal is an acceptable basis for negotiation of a fair and reasonable price." c. Example No. 3 - Material (Material examples 3 and 4 assume other insignificant cost or pricing or CAS problems were noted during the audit). In example 3, a recommendation is made that negotiations not be concluded until results of technical evaluation of material quantities and scrap factor have been considered. Refer to 10-210.4 and 10-304.4 (Qualifications) and 10-210.5 and 10-304.5 (Results of Audit) for further guidance on what to include in the following report sections. #### (1) Qualifications "We were unable to determine if (1) the engineering drawings are an accurate rendering of the items to be furnished, (2) the proposed parts are required, and (3) the scrap factor is reasonable. For a detailed discussion of these costs refer to Results of Audit, pages __ and __, Notes __ and __, respectively. [If the attempt to obtain a technical evaluation has not yet been reported, insert here the additional information required by D-302f, using the format appearing in alternative labor examples 1 and 2 above.] The technical results are considered essential to the evaluation of proposed material costs. Therefore, the results of audit are qualified to the extent that additional costs may be questioned based on technical evaluation. If the technical report is received before conclusion of contract negotiations and its findings materially impact our audit recommendations, we will issue a supplement to this report incorporating the results of the technical evaluation." ## (2) Results of Audit "In our opinion, the cost or pricing data submitted by the offeror are inadequate in part (see comments on pages _ and _, Notes _ and _, respectively.) However, the inadequacies described are considered to have limited impact on the subject proposal. The proposal was not prepared in all respects in accordance with applicable Cost Accounting Standards and appropriate provisions of FAR and the DoD FAR Supplement (DFARS) [for non-DoD agencies, identify the specific agency supplement, if any (see 15-102.2)]. However, as discussed on page __, Note __, the impact of the noncompliances is considered to be relatively insignificant. Nevertheless, in our opinion the engineering drawings, material parts and scrap facJanuary 2003 D13 D-304 tor discussed in the Qualifications section of the report are significant enough to materially impact the results of the audit. Therefore, as discussed with [name and title of contracting officer or representative] by [auditor] of our office on [date], we recommend that contract price negotiations not be concluded until the results of the technical evaluation of the material quantities and scrap factor are considered by the contracting officer." d. Example No. 4 - Material. (This differs from Example No. 3, in that no recommendation is made to delay negotiations until technical information has been considered.) #### (1) Qualifications "We were unable to determine if (1) the engineering drawings are an accurate rendering of the items to be furnished, (2) the proposed parts are required, and (3) the scrap factor is reasonable. On November 4, 20XX, we requested technical assistance from [name of organization]. For a detailed discussion of these costs refer to Results of Audit, pages __ and __, Notes __ and __, respectively. We have not received the technical evaluation. [If the attempt to obtain a technical evaluation has not yet been reported, insert here the additional information required by D-302f, using the format appearing in alternative labor examples 1 and 2 above.] The results of audit are qualified to the extent that additional costs may be questioned based on the technical evaluation. If the technical report is received before conclusion of contract negotiations and its findings materially impact our audit recommendations, we will issue a supplement to this report incorporating the results of the technical evaluation.' # (2) Results of Audit "In our opinion, the cost or pricing data submitted by the offeror were inadequate in part (see comments on pages _ and _, Notes _ and _, respectively.) However, the inadequa- cies described are considered to have limited impact on the subject proposal. The proposal was not prepared in all respects in accordance with applicable Cost Accounting Standards and appropriate provisions of FAR and the DoD FAR Supplement (DFARS) [for non-DoD agencies, identify the specific agency supplement, if any (see 15-102.2)]. However, as discussed on pages and __, Notes __ and __, respectively, the impact of the noncompliances is considered relatively insignificant. Because noncompliances and inadequacies are considered insignificant, except for the material quantity and scrap factor qualifications, we believe the proposal is an acceptable basis for negotiation of a fair and reasonable price.' # D-304 Reporting Technical Qualifications in Explanatory Notes When a required technical evaluation is not received, its absence should be reported in the explanatory note for each affected element. A brief statement may be inserted in either the "Summary of Conclusions" or "Audit Evaluation" statement, or both, as appropriate. If this is not practical, a separate appendix may be used, but it should be written specifically for the subject audit. A. Labor Example Manufacturing Direct Labor a. Summary of Conclusions: The proposed standard manufacturing direct labor rate accurately reflects contractor history. The contractor used plant wide labor standards adjusted for a productivity factor based on experience on the XYZ contract. The contractor then applied a 20 percent complexity factor to represent the impact of this newly proposed product. However, the judgmentally applied 20 percent upward adjustment to reflect productivity failed to consider the benefits derived from past learning on similar productions. We are unable to express an opinion on the acceptability of proposed direct labor without a technical evaluation. The status of our request for technical assistance is set forth in the Qualifications paragraph of this report. b. Basis of Contractor's Cost: D14 January 2003 D-304 The proposed
recurring direct manufacturing labor was developed using standard hours for set-up and run as detailed below: | | Standard | Hours | |--------|----------|---------| | | Set up | Run | | Item 1 | 1.097 | 453.301 | | Item 2 | 212.500 | 63.511 | | Item 3 | 312.400 | 5.551 | #### c. Audit Evaluation: We verified the standard manufacturing direct labor rates to the accounting records. We compared the hours proposed to the RFP required hours. We were unable to determine the reasonableness of the 20 percent complexity factor the contractor judgmentally applied as upward adjustment to the proposed recurring manufacturing direct labor productivity factor of 47 percent. - d. Contractor's Reaction: Omitted from this example. - e. Auditor's Response: Omitted from this example. - B. Material Examples The material examples include only the "Summary of Conclusions" (a.) and "Audit Evaluation" (c.) portions of the explanatory notes. # (1) <u>Bill of Material (BOM) Requirements</u> a. Summary of Conclusions: The BOM accurately reflects the most recent purchase history and current vendor quotes. In the absence of a technical review, we are unable to validate the engineering drawings and the material quantities required. The status of our request for technical assistance is set forth in the Qualifications paragraph of this report. c. Audit Evaluation: We statistically sampled this BOM and traced proposed quantities back to originating engineering drawings. We compared the proposed material prices to recent purchase history and vendor quotes. However, in the absence of a technical opinion we were unable to verify that (1) the drawings reviewed accurately reflect the items to be furnished, and (2) the proposed material parts, including quantities, are required. # (2) <u>Material Scrap Factor</u>. a. Summary of Conclusions: The material scrap factor reflects contractor history for similar production contracts. We have requested technical assistance to determine if the scrap factor should decrease over time due to increased productivity. The status of our request for technical assistance is set forth in the Qualifications paragraph of this report. # c. Audit Evaluation: We verified the development of this scrap factor to accounting records. However, without a technical evaluation we are unable to determine if scrap should decrease over time when dealing with similar production effort. # **D-400 Section 4 --- Cost Estimating Methods** #### **D-401 Introduction** - a. Cost estimating encompasses planning, coordinating, compiling, and pricing of proposed material, labor, and other items. Depending upon the contractor's size and type of work, this function may be performed by a single department or several departments acting together. - b. The objective of this section is to provide a cost estimating overview of the labor and material areas, with the understanding that the estimating methods discussed may also be used on other cost elements. A basic understanding of these areas is essential when attempting to evaluate a proposal. While the following guidance does not address a specific contractor estimating system nor a particular estimating method, the described principles and techniques will be applicable to most estimating environments. # **D-402** Overview of Cost Estimating - a. Cost estimating requires the application of skillful analysis and experienced judgment in projecting labor and material contract requirements. Timing constraints and the availability of historical data have an impact on the estimating process. Selections of appropriate estimating techniques require extensive analysis by contractors. Appropriateness of selected estimating techniques should be reviewed periodically. The same technique used when the program is at the engineering-concept stage, or when no bill of materials exists, is usually not appropriate for ongoing production. Because cost estimating integrates technical as well as financial information, the process requires input from many diverse organizational elements. - b. Although contractor estimating systems differ in approach and philosophy, their basic objectives are the same. Cost estimates are a series of informed projections and assumptions based on available information existing at the time of proposal preparation. - c. Cost estimating is comprised of logical steps. The level of detail required in these steps is often affected by the antici- - pated contract requirements expressed in the RFP. Typical steps in cost estimating follow: - (1) Ensuring that all relevant background documents such as historical costs, drawings, and specifications are available to assist in understanding job requirements. - (2) Determining which estimating techniques will be used, the level of detail required, and the amount of time available to generate and document a completed estimate. - (3) Determining if quotes and other information will be required from outside sources. - (4) Deciding if any elements require further clarification, redesign, or have potential manufacturing difficulties. - (5) Determining if the capability and capacity to manufacture required components exist in-house. - (6) Determining if further information is required to develop and complete estimates. - (7) Coordinating the activities of departments participating in the estimating exercise. - (8) Obtaining quotes, history, and other bases for material and subcontract items. - (9) Assembling direct costs by cost element, and computing indirect expenses using appropriate factors and rates. - (10) Consolidating proposal elements and documenting preparation rationale. # **D-403** Estimating Process at a Typical Contractor - a. At large contractors, the estimating (or pricing) department usually has overall responsibility for coordinating and assembling estimates to be incorporated into proposals authorized by top management. Preparation of detailed estimates is accomplished by the departments which will actually perform or supervise the work if the contract is received. - b. The cost estimating project is usually initiated in response to an RFP. The RFP provides a statement of work, outlines government requirements, and invites contractors to prepare a proposal. It is also a source of information in establishing a D16 January 2003 D-403 baseline for labor and material requirements. Contractor proposals should include tasks and materials consistent with the RFP. When top management authorizes a response to an RFP, the estimating department reviews the RFP and top-management guidance and issues a "cost estimate request" to other departments within the company that will be involved in putting the proposal together. The estimating department generally has primary responsibility for coordinating the overall effort and authorizing the finalized proposal. - c. Contractors may also submit unsolicited proposals for requirements not yet reflected in any outstanding RFPs. When such proposals are pursued by a government acquisition organization, the PCO will normally request a more detailed cost proposal before requesting an audit. The estimating process should be the same as when there is an RFP. - d. When production is contemplated on items not previously produced, the estimating department (or the related project management department) solicits a preliminary conceptual design from the engineering department. The preliminary design should be detailed to the point that individual parts can be identified and numbered. After the preliminary design has been completed and reviewed, a work breakdown structure (WBS) is prepared. The WBS is a matrix that organizes and describes proposed tasks and identifies the performing departments. This is best done before the details of the "cost estimate request" are finalized. (If conceptual design and detailed estimating must proceed concurrently, the contractor will have much greater difficulty producing a sound cost estimate.) - e. The planning process entails the preparation of delivery schedules, staffing projections, span-time requirements, and funding estimates. Planning is a cooperative effort that involves the estimating, engineering administration, and production planning and control departments. - f. "Grass-roots estimates" are basic estimates of labor, material, and other direct costs developed by the departments that will actually perform the work. In some cases, departments are asked to generate price estimates. When this occurs, special care must be exercised to ensure that sound purchasing considerations such as competition and quantity discounts are applied to the estimates. - g. The engineering department usually develops staff-hour estimates for all potential make items. These estimates are normally prepared at a very low level, such as by individual part. The manufacturing department uses this information with historical data to project labor requirements. These projections may be broken down by functional area and/or cost center (e.g., system analysis, design, fabrication, assembly, test, inspection, packaging, and shipping). A variety of techniques including manloading, statistical relationships, past experience, and judgment are used to produce staff-hour estimates. Additional information such as program schedules and configuration/performance characteristics from preliminary and final engineering design drawings may be worked into the estimates. In all cases, the method used to produce direct-labor estimates should be discernible, and supporting documentation should be available for verification. - h. A make-or-buy committee, normally chaired by the program manager, reviews required materials and associated labor, and determines which items should be produced internally. In some instances, decisions will be deferred until a contract award is made and further design effort completed. - i. The estimating department requests the purchasing department to provide estimates for all potential buy items. The
purchasing department is provided with the best available specification data from the engineering and quality assurance departments. Delivery requirements are provided by the manufacturing planning department. Material unit prices (including purchased parts, raw material, buy-to-drawing items, and subcontract items) are obtained by the purchasing department from vendor quotations, current purchase orders, catalogs, and in some cases statistical methods. Material costs are usually developed by applying these prices to unit quantities in a bill or list of material provided by the engineering or manufacturing department. The purchasing and estimating departments are usually responsible for determining appropriate material escalation factors. Escala- tion is either quoted by major vendors or projected using specific price indices. j. Each estimate is reviewed and approved at the functional level. These estimates are then submitted to the estimating department which assembles the total proposal estimate. Estimating personnel integrate, adjust, and analyze estimates for accuracy and completeness. The cost estimate is summarized further by functional organization, major tasks, and other breakdowns required by the RFP. When all direct-cost elements have been received and properly classified, applicable direct-labor rates and indirect-expense rates and factors (e.g., labor overhead, material burden, and G&A expense) are applied to complete the basic cost estimate. These rates and factors may be developed by the estimating or accounting departments. Fee calculations are usually applied in accordance with RFP guidance and company pricing policy. The completed cost package is then reviewed for accuracy and reasonableness by program management. k. Subsequent to initial pricing and the determination of profit factors, the proposal is reviewed by a management committee usually consisting of representatives from marketing, accounting, plant management, estimating, and the program office. The committee scrutinizes the reasonableness of estimates, overall acceptability, and compatibility with the company's business strategy. This process culminates in the formal release of the pricing proposal, including the Standard Form (SF) 1411 and supporting rationale. #### **D-404 Government Regulations** Several government regulations provide guidance relevant to cost estimating: a. Standard forms are no longer available for the submission of cost or pricing data or information other than cost or pricing data. The contracting officer may require submission of cost or pricing data in the format indicated in Table 15-2 of FAR 15-408, specify an alternative format, or permit submission in the contractor's format. Table 15-2 provides a vehicle for the contractor to submit to the government a proposal of estimated and/or incurred costs by contract line item with supporting information, adequately cross referenced, and suitable for detailed analysis. It requires a breakdown of cost by line item so that pricing data is easily understood and tracked. Information other than cost or pricing data may be submitted in the offeror's own format unless the contracting officer decides that use of a specific format is essential and the format has been described in the solicitation. b. FAR 15.403-4 requires contractors to issue a certificate of current cost or pricing data attesting that the information furnished was accurate, current, and complete as of the date of final agreement on price. c. FAR 3.501 deals with investment pricing and addresses contractor attempts at "marginal buying" or "buying in." The regulation instructs contracting officers to ensure that contract shortfalls are not recovered in subsequent pricing actions when it is believed the contractor is using artificially low prices to "buy in." d. Earned Value Management System (EVMS) Guidelines, as described in DoD 5000.2-R, define contractor management system requirements on significant flexibly-priced contracts for selected items identified as major defense systems. e. The Cost/Schedule Status Report (C/SSR), DoD 5000.2-R, may be required for non-major contracts that exceed \$6.3 million and a 12-month duration. C/SSRs are not usually required on firm-fixed-price contracts. #### **D-405** Types of Cost Estimating a. The basic elements of cost are direct material, direct engineering and manufacturing labor, other direct costs, indirect expenses, and cost of facilities capital. The cost estimating technique selected will be dictated by the availability of historical evidence and government requirements, and rarely is one estimating technique used to the exclusion of all others. For example, contractors typically use synthetic estimating in conjunction with parametric and comparative techniques. b. Cost estimating methods may be categorized into six main groups: subjective, parametric, comparative, synthetic, global, and research and development. Further comments related to each of these follow. - (1) Subjective. This estimating method develops costs using experience, judgment, memory, informal notes, and other readily available data. Typically, these kinds of estimates are used in proposals when drawings have not yet been developed or the contractor is faced with limited proposal preparation time. - (2) Parametric. This method creates labor and material estimates by statistically analyzing and manipulating historical data to reflect current quantity requirements (see 9-1000). For example, previous raw material requirements on a price-per-pound basis could be used to project current proposal amounts. Parametrics uses one or more cost estimating relationships (CERs) to estimate costs associated with the development, manufacture, or modification of an end item. Special cost comparisons are required to validate parametric estimating systems. Variables used in CERs must be logically related and statistically valid. The rationale for selecting the variables should be well documented. Parametrics are often used to cross-check estimates developed using other estimating techniques. - (3) Comparative. This method develops proposed costs using like items produced in the past as a surrogate. Allowances are made for product dissimilarities and changes in complexity, scale, design, and materials. The comparative method can be used in conjunction with parametric estimating and can be used to develop adjusted unit costs while parametrics are applied to project the newly proposed quantities. Improvement curve applications are an example of comparative estimating. - (4) Synthetic. This method divides proposals into their smallest component tasks. Estimates are developed for component tasks which make up the whole. Synthetic estimates are normally supported by detailed bills of material. - (5) Global. This is a quick and subjective technique used to determine the advisability of continuing with a project. - (6) Research and Development (R&D). There are two basic approaches available for this difficult type of estimating. The first is a simple form of targeting R&D objectives in the context of a fixed budget. As in the preparation of routine budgets, the breakdown should be compatible with the cost-accounting system and procedures established to monitor and control expenditures. A second method of estimating R&D is a trial-and-error procedure involving an interchange of ideas and information including all available records of past R&D effort and experience. Because there are so many unknown factors involved in R&D effort, the potential for error in this type of estimating is especially great. # **D-406** Validation of the Cost Estimating Method - a. Normally, contractors settle on a cost estimating procedure and use it repetitively. Validation of estimating procedures entails a comparison of cost estimates to actual costs for completed projects. If the actual costs accurately reflect the work content and historically approximate the estimates, then the estimating procedure should be considered reliable. Parametrictechnique documentation should show that work being estimated is comparable to the prior work from which the costs are developed. Data is verifiable if it is generated from an adequate estimating system as described in 5-1204.1. Attention to validation of a contractor's estimating procedure is critical, and will save audit effort in the long run. - b. Deviations between estimated and actual cost are usually a consequence of human error or changed circumstances. Some common causes of deviations in estimates follow: - Careless accumulation of supporting data. - (2) Incorrect design information. - (3) Unexpected delays causing premiums to be paid for overtime or material. - (4) Unexpected processing problems requiring deviation from the manufacturing plan. - (5) Failure to identify unrealistic bids from subcontractors. - (6) Failure to rework preliminary estimates to produce an accurate finished estimate. (7) Reliance upon estimators who are not familiar with job processes. - (8) Making a "guesstimate" and then "padding" it to protect against unanticipated costs. - (9) Failure to consider price breaks on quantity purchases. - (10) Inappropriate use of learning curves or other techniques. - c. Controlling Estimate Deviations - (1) Project Simplification. A successful approach has been to divide a project into component parts of roughly equal size and generate estimates for the component parts. The summation of the component estimates typically produces fewer errors than the high-level approach. - (2) Random Errors. Some cost estimating errors occur at random and their causes may be difficult to identify. A determination of the magnitude of these errors needs to be made so that allowances in cost estimates can be provided for. Statistical analysis may be used (by the contractor and the auditor) in making this determination. - (3) Biased Errors. Other cost estimating errors can be identified to causes.
Trends can usually be developed for these type of errors. Examples of biased errors and their causes follow: - (a) Fluctuation in labor and material costs caused by economic conditions. - (b) Variation in the cost of a machine, tool, or piece of equipment attributable to its size or capacity. - (c) Decrease in the cost of performing an operation as the number of units produced increases. - d. Contractor estimators should periodically monitor the accuracy of their estimates. Cost-to-noncost CERs should be monitored in the same manner as cost-to-cost CERs. For change-order pricing or for repetitive use, CER monitoring is critical. Significant deviation from actuals should alert the estimators to the influence of random and biased errors. - e. Contractors may use estimating methods that will cut proposal preparation costs. Cost benefit analysis must be performed to assure that the costs of implementing and monitoring new methods do not outweigh the benefits of reduced estimating costs. If analysis suggests that they do, then the matter should be pursued for potential cost-avoidance recommendations as discussed in 9-308. f. The Truth in Negotiations Act, 10 U.S.C. 2306a, requires the contractor provide the government with all facts available at the time it certifies the cost or pricing data as current, complete, and accurate (see 14-100). All estimating techniques employed must meet the same basic disclosure requirements under the act as discrete estimates. If a contractor uses a cost-tononcost CER in developing an estimate, the data for the CER should be current, accurate, and complete (see 9-1000). The certification is not to the judgments employed in preparing the estimates, but to the factual data underlying the contractor's judgment. ### **D-407 Labor Cost Estimating Methods** ## D-407.1 Overview a. Labor is a major element of direct cost and overhead allocation. Total labor cost is described by the equation: ## Total Labor Cost = Rates X Labor Hours Evaluation of the accuracy of laborhour quantities requires a thorough understanding of a contractor's estimating methods. Commonly used labor estimating methods will be described in following sections. - b. Different terminology is frequently used to classify labor. The accounting and non-accounting classifications are as follows: - (1) Accounting. Auditors use the terms "direct" and "indirect" to describe the manner in which labor costs are charged to end-items or products. Direct labor such as factory workers and design engineers is closely linked and identifiable to end items. Indirect labor such as general engineers and supervisors is accounted for in overhead pools and distributed to a base. In this guidance, attention is focused on verification of direct labor requirements. See 9-300, 9-500, and Chapter 8 for guidance dealing with the potential that contractors may under or over recover costs as a result of inconsistency in the classification and treatment of labor costs, and deviation from applicable Cost Accounting Standards. - (2) Non-Accounting. Engineers and manufacturing personnel use the terms "touch labor" and "non-touch labor" to distinguish between individuals who have direct hands-on involvement in manufacturing and testing processes and those who do not. Examples of touch labor personnel are production workers, test technicians, numeric control operators, and electronic assemblers. Non-touch-labor employees include some engineers, production control personnel, administrators, and logistic personnel. Usually touch labor is direct; however, not all direct labor is touch labor. - c. There is little uniformity among contractors in the way they categorize labor when estimating costs. However, direct labor can generally be grouped into the following three major categories. - (1) Manufacturing Labor. This is touch labor on a product or a service which advances the product toward completion. Most weapon systems contain metal components. Organizations engaged in metal manufacturing normally employ numerical control (NC) machinists, sheet metal fabricators, and welders. Another common component of weapon systems is electronics. Electronic manufacturing typically encompasses printed circuit board (PCB) manufacturing, PCB assembly, cable and harness assembly, and final box or cabinet assembly. Some contractors use processes which necessitate specialized labor. For example, non-metallic manufacturing deals with plastics, injection molding, composite technology, and transfer molding. Other specialties include foundry, forging, and chemical processing. Many of the above operations produce components that feed a final assembly. Frequently, final assembly areas will be dedicated to just one product such as a missile or aircraft. If the effort is large, labor may be categorized by major aircraft structure or worker trades. In the shipbuilding industry, manufacturing labor is generally organized by trade such as electricians, pipefitters, welders, machinists, riggers, loftsmen, painters, grinders, burners, and carpen- ters. Other trades may be present depending on the particular shipyard. (2) Support Labor. Support workers are responsible for the smooth operation and coordination of production activities. Production planning and control, quality inspection, material transportation, and warehousing personnel are examples. Other support labor activities ensure that manufacturing labor personnel have all the proper capabilities to manufacture products efficiently. Examples are toolmakers and equipment maintenance personnel. A distinction is usually made between recurring (sustaining) and non-recurring onetime support labor. Recurring effort is a function of the number of units produced. Recurring labor assists manufacturing personnel by incorporating design changes, productivity improvements, and control monitoring. process recurring labor does not depend upon quantity of units produced. Examples include tool design, instruction writing, and factory rearrangement. These activities are onetime occurrences. The separation of non-recurring and recurring labor is important and must be performed to obtain accurate estimates. - (3) Engineering Labor. Engineers are primarily involved with product research, design, and production support. Engineering labor comprises a significant portion of labor costs for high-technology weapon systems. The major disciplines of engineering are industrial, mechanical, electrical, chemical, and civil. Some subspecialties are hydraulic, tooling, manufacturing, test, quality, reliability, and facilities. Engineers working in these specialties usually have degrees in one of the major disciplines. Technical cost estimates are frequently prepared by engineers. - d. Cost estimating is not an exact science. Quality cost estimates are possible, however, if pertinent historical information is available and expert judgment and experience are applied. Information used in preparing cost estimates includes: - (1) actuals for the same item or activity. - (2) actuals for a similar item or activity, - (3) labor standards with adjusted historical efficiency factors, - (4) standard cost with forecast adjustment factors, and - (5) tentative, judgmental, rough estimated hours, or hours based on a similar item/activity. One of the initial steps in evaluating a contractor's estimating procedure is to ensure that accurate and reliable information was used to make estimates. Examples of information that may produce unreliable estimates are: - (1) Factoring support labor based on judgment rather than using earlier production contract history. - (2) Using Lot 1 experience in lieu of improvement curve projections from Lot 1 experience for estimates of subsequent production lots. - (3) Using a cost estimating method based on experience at one facility although the item proposed will be manufactured at a different facility. - (4) Employing an estimating method based on a supposed "industry-wide-accepted-and-used" method rather than inhouse experience. # **D-407.2 Labor Estimating Methods** - a. Available labor estimating methods have application across a wide range of business functions and product designs. Seven general estimating approaches are normally used. Selection of the most appropriate estimating technique and use of high-quality estimating data are necessary to produce reasonable and accurate labor estimates. These seven methods, listed in relative increasing degree of accuracy, are: - (1) judgment and conference; - (2) comparison; - (3) unit method; - (4) factor method; - (5) probability approaches; - (6) cost-and-time estimating relationships; and - (7) standard time method. - b. Judgment and Conference. Good judgment is essential when using any of the seven labor estimating methods. In the absence of historical data, estimators may have to rely solely on judgment. When the judgment method is used, labor cost estimators are selected for their experience, common sense, and knowledge. An estimator must be objective in attempting to measure all future factors that affect actual cost. Various techniques are used to enhance judgment. Sometimes judgmental estimating is done collectively. The conference method is a group consensus-method of establishing a collective estimate. This method usually involves representatives from various organizations conferring with the estimators to jointly estimate cost. Major drawbacks to the conference technique are the lack of analysis and a verifiable trail of facts from the estimate back to the governing assumptions. In spite of these drawbacks, the conference technique is widely used. The major problem with both the judgmental and conference techniques is the influence of personal bias. Forecasts can be influenced by a person's assigned role, position, and special interests. Depending upon the degree and direction of personal bias, estimates may be high or low. Judgment must be applied in deciding which estimating
relationships will be used. Secondly, judgment is important in determining the impact of technology and the type of adjustments that must be made. Judgment is also required to decide whether the results obtained from estimating relationships are reasonable in comparison to the past cost of similar items. c. Comparison Method. This method compares items being estimated to items of similar configuration (and known cost) to produce labor estimates. The comparison method is similar to the judgment method, except that it attaches a formal logic. The comparison method is represented by the following algebraic equation: Estimated Cost (New Design) = Historical Cost (Similar Design) + Adjustments An estimator confronted with the task of projecting labor costs for a new product design should investigate similar product designs for which historical cost data exists. To be of use, similar designs must closely approximate the technical characteristics of the new design. Allowances are made for product dissimilarities in complexity, scale, materials, function, and D22 January 2003 D-407 other parameters. A comparison estimator makes judgmental additions and subtractions to costs of a similar design to obtain new cost estimates. To produce accurate cost estimates, the estimator must understand the factors and relationships that have an impact on product costs. For example, when using the comparison method to estimate the cost of a new electronic assembly board design, it is important to understand that number and type of electronic components are the critical factors, not overall board size. d. Unit Method. This method of labor estimating relies on an accumulation of past experience which is divided by a cost driver to produce a cost per unit. Other terms used to describe this method include order-of-magnitude, lump sum, module estimating, and flat rates. One typical example of unit estimating is "labor cost of fabricated components per pound of casting." Another example is "support labor hour per manufacturing labor hour." e. Factor Method. A logical extension of the unit method of estimating is to improve accuracy by using more than one factor. Use of separate factors for different cost items should improve results. For example, building construction can be estimated by using a unit factor such as dollars per square feet. However, an improved method might be to use separate unit factors for heating, lighting, electrical, and other elements. The individual costs are summed to obtain total labor costs. Comparison, unit, and factor methods typically use only selected historical data. The auditor should make sure that historical data is representative and complete. The contractor should be able to provide rationale for including or excluding historical data. f. Probability Approaches. This estimating method makes provision for uncertainty in the estimating process. Other approaches typically produce discrete estimates. For example, a contractor may estimate that 365 staff-days are required to complete a test-stand. Using a probability technique, the same estimate would be expressed as follows: "The contractor is 75 percent certain that it requires 365 staff-days to complete the test-stand." Probability approaches attempt to compensate for random occurrences and dependency between events. A good example of dependency is wall construction. A normal sequence of events in wall construction is studding, plumbing, electrical, sheet rock, and painting. Each stage is dependent upon a prior stage being completed. Probability approaches make recognition of the fact that specific labor costs can be affected by other activities which must first occur. Computer simulation, Monte Carlo techniques, and PERT are examples of probability approaches. Input estimates for these approaches are derived from the other estimating methods. Auditors must carefully review the base for the input estimates. Final estimates result from the probability approach's treatment of the input estimates. The mathematical and statistical characteristics of probability approaches can be complex and, consequently, subject to high risk of error. g. Cost-and-Time Estimating Relationships. Statistical estimating methods can produce mathematically fitted functions called cost estimating relationships (CERs) and time estimating relationships (TERs). CERs and TERs are developed by mathematically relating cost or time estimates to a cost driving feature of the product or manufacturing environment. Examples of cost drivers include number of transformer wire leads, quantity of components mounted on a printed circuit board assembly, number of wires making up a cable assembly, end item weight, or cumulative production quantity of any product. The estimating relationship is an equation with two kinds of variables. The equation provides the ability to predict a dependent variable on the basis of knowledge of one or more independent variables. The relationship between the variables must be a logical one. Whether the relationship is cost-to-cost or cost-to-noncost, the contractor should be expected to demonstrate that it is logical. A variable whose value is to be predicted is called the dependent variable. The cost or time driver is the independent variable. The estimator using experience and judgment identifies potential cost drivers and mathematical relationships. If they exist, mathematical relationships between the two kinds of variables can take on many forms including linear and exponential. To develop CERs and TERs, historical data on both dependent (labor) and independent (cost drivers) variables must exist. Regression analysis is then performed to determine if a mathematical relationship exists between the variables. Mathematical relationships are evaluated by including and excluding various cost drivers until "best fit" relationships are identified. DCAA has issued extensive instructions in the use of regression analysis. Refer to Appendix E for more information. Common CERs and TERs are described by improvement curves, linear relationships, and power law and sizing models. (1) Improvement Curve. Improvement curve theory is based on the principle that the time required (labor) to produce successive quantities of a product decreases with (a) additional experience and (b) introduction of improved methods and tools. The theory supporting improvement curve modeling is well established. Workers accrue manipulative skills and familiarity with the details of the job. Improved plant layout and tooling impact productivity. Process planning refines the work into orderly and producible stages. Raw materials, parts, and subassemblies are purchased in more suitable designs, sizes, and shapes. Shop organization and control practices are revised to address production problems. The improvement curve theory holds that improvement will be a constant percentage over doubled quantities. Mathematically, the improvement curve (unit theory) is expressed as: $y = ax^b$ where x =the unit (or lot) mid-point y = the direct cost (or hours) for unit x or the average direct cost (or hours) for the lot whose mid-point is x. a = a coefficient depicting the direct cost (or hours) for the first unit b = the improvement coefficient An improvement curve normally displays a negative slope which reflects a decrease in required time for successive product quantities. Since the reduction is primarily due to increased knowledge and skill, the curve is also referred to as the learning curve, experience curve, or progress curve. DCAA has issued extensive guidance on the use of improvement curves. Refer to Appendix F for more information. (2) Linear Relationships. The relationship between labor and the cost driver (dependent and independent variables) is frequently linear. A linear relationship can be described graphically by a straight line. The representation of a single independent linear equation is: Labor Cost (or Time) = Coefficient X Cost Driver + Constant where: Coefficient = the ratio of the change in Y associated with a given change in X (referred to as the slope of the line) Constant = the value of Y when X is zero (the Y intercept) Cost or Time = the dependent variable (the variable to be predicted) Cost Driver = the independent variable As the quantity of the cost-driving variable changes, cost or time also changes proportionally. Linear CERs and TERs are not just limited to a single independent variable. When developing the equation, the cost estimator may choose an infinite variety of variables until the best correlation is found. (3) Power Law and Sizing Model (Cost Capacity Relationship). This theory models the relationship between similar products of different sizes, weights, and volumes, and takes into account "economy of scale." The following equation provides the mathematical relationship for comparison on this basis: $Cb = Ca(Qb/Qa)^X$ where: Ca = actual cost for reference size Qa Cb = estimated cost for new design size Qb Qa = size of reference design a D24 January 2003 D-407 Qb = size of new design b For example, a contractor has determined from historical records that machine-component manufacturing-labor costs increase by half as the machine-component weight doubles. The correlating exponent (x) in the above equation is determined as follows: ## Rearrange the equation to: $Cb/Ca = (Qb/Qa)^{x}$ Based on data given, the following is obtained from the equation: Cb/Ca = 1.5 and Qb/Qa = 2 Substituting these values into the rearranged equation in (2) above, the equation is: $1.5 = 2^{x}$ Using logarithms, the exponent (x) is found as follows: $x = \log 1.5 / \log 2$ x = 0.585 The contractor's records indicate that a 1,000-pound component was completed in 1,000 hours. The new component to be estimated weighs 1,250 pounds. Substituting into the equation gives the following results: Note that a 25 percent increase in weight results in only a 14 percent increase in manufacturing hours. h. Standard
Time Method. The standard time method is the most precise technique for estimating manufacturing labor. The basis for the manufacturing labor estimate is a "labor standard." Contractors do not bid standards but bid labor cost based on standards which are adjusted to reflect production inefficiencies. Adjustments take the form of a productivity factor. The following algebraic equation represents this concept: Estimate of Actual Labor = Standard / Expected Productivity Factor x = correlating exponent O < X < 1 (1) Standard. As discussed above, a standard is a measure used for making judgments or as a basis for comparison. A labor standard is a unit of time required to accomplish a work task. Industrial engineering work measurement techniques (see D-407.3) are used to develop engineered labor standards (ELSs). Engineered labor standards provide an unbiased assessment of a "fair day's work." The term "engineered standards" is frequently misapplied. True engineered standards are not based on history, judgment, guesses, comparison, or opinions. Cost estimators will determine a product's total ELS content by summing all the ELS for assemblies, subassemblies, manufactured components, and other efforts required to build a product. The ELS content summation process is roughly analogous to adding up material costs in an exploded assembly/subassembly BOM. Total ELS content will not remain stable for a product over an extended period of time. ELS apply to specific methods, machinery, tools, and automation available at the time when the standards were established. If contractor management does not estimate any reduction in ELS, it is implied that no attempt will be made to improve operations. Engineered standard time does not relate to any particular unit of production. An unhindered average skilled worker can achieve an ELS almost from the first try. Most cases of inefficiency in the factory are attributed to management deficiencies. Work measurement techniques do not recognize the concept of achieving standard at a specific cumulative production point (e.g., 1000th unit). The standard attainment method, discussed in D-407.3b, adjusts an efficiency factor to a production unit. The efficiency factor is applied to a standard to obtain estimated labor cost. (2) Routings. Routing sheets provide a detailed breakdown of operations required to process raw material and/or produce parts and the time required to perform each of these operations. Each product part number manufactured internally by a contractor will have a routing sheet. If the January 2003 D25 D-407 contractor uses a work measurement system, each step will have a description and standard time. Contractor management can use this information to plan, schedule, and control the shop. Proposed labor costs based on standards can be verified against information contained on routing sheets. Use of a statistical sample will expedite the verification process. Verification frequently reveals numerous problems, including addition errors, erroneous adjustment factors, and missing labor standards. Without verification, contractors may substitute poorly derived estimates in lieu of estimates based on valid labor standards. (3) Audit. Duplication and inclusion of unnecessary standards are difficult to detect. Make/buy parts should be carefully scrutinized to verify that double counting has not occurred. Alternate routings which include extra operations may be listed on routing sheets. Their existence provides flexibility to handle unusual circumstances such as machine breakdown, critical machine overload, or product quantity variations which affect machine selection. Inclusion of labor standards for alternate routings can produce duplication and inflation of labor estimates. # **D-407.3** Work Measurement Techniques Work measurement is a generic term used to refer to the setting of a time standard by a recognized industrial engineering technique, such as time study, standard data, work sampling, or predetermined motion time systems. a. Standard Time Method Work Measurement Techniques. Work measurement techniques determine the time required to do a task. To account for differences in factory conditions and employees, a universal labor standard was defined as follows: the time for an average skilled worker to complete a task under average conditions, working at an average pace, and using a prescribed method. Average is not defined in a mathematical sense but has the meaning of typical or expected. There is a misconception that a standard reflects what a "perfect" worker can achieve under "ideal" conditions. By definition, ELSs relate to an "average" worker and "average" conditions. Techniques for establishing labor standards are stopwatch time study, predetermined motion-time data, work sampling, and standard data. - (1) Stopwatch Time Study. The use of a stopwatch time study to establish ELSs requires (a) observing the task and subdividing it into motion elements; (b) timing and statistically establishing an arithmetic average for the elements; (c) normalizing, rating, or leveling the elemental times; and (d) applying an allowance for PF&D. Normalizing, rating, or leveling are used to adjust the observed time to a comparative standard. Operators will perform a task at a pace above normal if they have superior skills or are intentionally rushing. Conversely, operators will perform at a pace below normal if they are not totally familiar with the job or are purposely slow. To compensate for the difference in pace, the Industrial Engineer must rate the performance of his subject by established criteria. - (2) Predetermined Motion-Time Study. There are a number of predetermined motion-time systems available including Methods Time Measurement (MTM), Work Factor Systems (WOFAC), and Basic Motion-Time (BMT) Study which break manual tasks into basic motions. Predetermined time systems were established to avoid the difficulties of timing and normalizing. Observing the task and subdividing into elements are required to classify all motions into elemental components. Unit times have been tabulated for elemental components according to factors such as distance, degree of muscle control required, precision, and strength. The ELSs are completed by application of a PF&D factor to the elemental component unit - (3) Work Sampling. Work sampling is used to establish standards for (a) large work crews or (b) long-duration job cycles with irregular patterns. Continuous observation of the worker is not required with work sampling. A statistically significant quantity of worker observations is made so that proportions of time devoted to various activities can be determined at given confidence levels. This technique produces the least accurate ELSs. - (4) Standard Data Systems (also referred to as Standard Time Data System or D26 January 2003 D-407 STD). These systems provide labor standards prior to the actual performance of work. (Other methods of establishing standards require direct observation.) Because of this characteristic, standard data systems are important in the cost-estimating process. There are two kinds of STDs: (1) synthetic and (2) analytical. Synthetic STDs use a catalog of individual operation ELSs which are added to create a total labor standard for a manufactured part. An analytical STD uses a mathematical formula to establish the total labor standard for a manufactured part. Both require using ELSs previously developed via time study, predetermined motion time systems, and work sampling. Synthetic STD combine separate ELS. Many tasks are repeated frequently, and are identical regardless of the product being manufactured. The time standards for these tasks, once established by a work measurement specialist, can be cataloged and referred to each time they are required. Examples are loading/unloading of a machine, driving a rivet, or removing a part from a fixture. Establishing a synthetic data system ELS requires an industrial engineer to determine all the required manufacturing steps. In addition to establishing labor standards, this procedure is necessary to determine process routing. The engineer refers to the STD catalog for the appropriate manufacturing step's standard time. The ELS for a manufactured part is a summary of all the standards for the separate manufacturing steps. Analytical standard data systems are similar to CERs (D-407.2g). The difference is that labor standards are substituted for historical actual hours during the development process. Sets of previously established labor standards for a product and related possible cost driving characteristics (parameters) are gathered. Regression analysis is then performed to determine the mathematical relationship between the developed labor standard and the cost drivers. Numerous relationships (determined by including and excluding various cost drivers) may be tested until a best fit is established. STDs are derived from ELSs previously developed by direct observation of manu- facturing operations. A significant problem is that contractors frequently lose or misplace this data. STD systems require periodic maintenance and auditing to ensure accuracy. Retention of original data is extremely important to both the maintenance and audit functions. Unmaintained, STD system accuracy will deteriorate because of changes in the work environment. An effective STD requires that adjustments be made for changes in machinery, tooling automation, and procedures. Since ELSs are specific to machines and tools, it is extremely important that all changes be reflected in the standards. Periodic audits are required to ensure that system accuracy and reliability are maintained. STDs not based on engineered standards are suspect. Guesstimates, standards derived from technical literature, will likely produce unreliable results. b. Standard Time Method Productivity Factor. The expected productivity factor is part of the Estimated Labor Time equation
for the Standard Time Method. Standards assume a degree of efficiency for work accomplished by an average worker under average conditions. Products may be manufactured under conditions that make standards unachievable. Productivity factors adjust product standard times for varying work conditions and other influences. Productivity factors are derived from contractor historical timekeeping data. Productivity factors are estimated by adjusting historical efficiency for various influences and special circumstances. Adjustment factors are developed using the unit method, and improvement curves. Expected productivity is described by the following equation: Expected Productivity Factor = Historical Efficiency X Adjustment (1) Historical efficiency is normally developed for a specific period. The efficiency factor is the ratio of standard hours earned to actual hours spent on an increment of work. Earned hours is the time in standard hours credited to a worker (or group of workers) who completes a given January 2003 D27 D-407 task (or group of tasks). When earned hours equal actual hours, efficiency equals 100 percent. Efficiency is described by the following equation: Efficiency Factor = Earned hours (Standard/ Actual hours) (elapsed time) Efficiency factors can be developed for any level in a contractor's organization. Auditors should verify that an appropriate efficiency is used for the organizational level most closely identified with the actual work. For example, using a plant-wide efficiency for estimating labor for an individual department or vice versa will distort the labor estimate. (2) Adjustments to historical efficiency are required to project expected from historical costs. Normally, contractors lower productivity factors based on the belief that the estimated product is unique and differs from the products which generated the historical basis for its estimate. These adjustments require special audit attention. The impact of different production quantities on productivity is generally estimated by (1) the standard attainment and (2) first unit estimating methods. To develop an estimate using these methods, historical realization factors and their related cumulative production quantities are collected. An improvement curve is developed by means of regression analysis. The x-intercept is the standard attainment point (or the cumulative production quantity) when realization equals 1.0. The first unit estimate of realization is the y-intercept (or the point where the cumulative production quantity equals 1.0). Both approaches treat the curve slope similarly, but they differ in how they express efficiency in relation to the cumulative production unit. (3) Standard Attainment Method. This method assumes that a cumulative production quantity exists where the standard will be achieved. Achieving standard means achieving an efficiency factor of 1.0. Contractors will speak of 100th, 250th, or 1,000th unit standard, which means they expect to eventually achieve efficient production after producing that quantity of a product. The productivity factor is devel- oped from an estimate of the expected realization. The realization factor is developed by projecting backwards from the point where realization equals 1.0 (at the standard attainment point) to the lot midpoint of the product being estimated. Auditors are cautioned to evaluate how the standard attainment technique is applied. Contractors may fail to substantiate method parameters such as slope and realizations with historical data. Frequently, contractors assert that there is a traditional standard attainment point, e.g. 1,000 units. There is usually no validity to this assertion since each company has a unique rate of improvement. Another caveat has to do with the slope of the curve. In typical improvement curve applications, steep rates of improvement (100 percent being flat, 80 percent steep, and 60 percent very steep) are projected forward from actuals which reduces estimated cost. In the standard attainment estimating technique, because the estimator projects backward up the curve, steeper curves produce significantly greater estimated costs. Contractors may state they are being aggressive by projecting steeper curves than are historically supported. Such a statement is usually false. (4) First Unit Estimating Method. This method is essentially the opposite of the standard attainment approach. As previously discussed, historical information is used to derive the typical realization factor for the initial production unit. The realization factor is developed by projecting forward from the first unit realization factor at the expected improvement curve slope to the product lot mid-point. Labor cost is estimated by multiplying the standard labor content by the lot mid-point realization factor. #### D-407.4 Military Standard (MILSTD) 1567A When made a contractual requirement, MILSTD 1567A requires contractors to implement a proper work measurement system. Contractors are required to meet predetermined minimum work measurement system requirements of accuracy, coverage, consistency, documentation, and audit. Any weaknesses inherent in the work measurement system which have an impact on the accuracy of labor estimates must be fully documented and provided to the government. Additional information pertinent to MILSTD 1567A is as follows: a. Applicability. MILSTD 1567A establishes a contractual requirement for an integrated and disciplined work measurement system on manufacturing operations. When applied with a positive management commitment, experience shows that MILSTD 1567A has achieved improved productivity and cost control. MILSTD 1567A became effective March 11, 1983. It applies to prime production contracts exceeding \$20 million annually or \$100 million cumulatively. When the standard applies to a prime contract, subcontracts exceeding \$5 million annually or \$20 million cumulatively are also covered. Ship construction, R&D, and service-type contracts are exempt. - b. Requirements. Under the standard, contractors are required to: - (1) Establish and maintain a documented measurement system using recognized techniques such as time study or standard data to derive at least 90 percent confidence that the hours are accurate within 10 percent. - (2) Prepare a schedule to achieve the stated precision limits for at least 80 percent of all touch-labor categories. - (3) Include allowances in production standards for PF&D. - (4) Measure touch-labor efficiency as a ratio of production standards to actual hours. - (5) Establish periodic labor efficiency and variance reporting requirements for each work center to include causes of significant variances and corrective action taken. - (6) Identify major elements which comprise realization factors used to modify labor standards. - (7) Use engineered labor standards as an input for budgeting, estimating, planning, and performance evaluation. - (8) Conduct an internal audit of the work measurement system at least annually to ensure compliance with the requirements of the standard. - (9) Retain a copy of any audit findings for at least two years and make audit findings available to the designated government representative for review upon request. - (10) Conduct operations analyses and methods improvement programs. - (11) Have a formal written policy covering the use of the work measurement system. - c. Definitions - (1) Engineered Labor Standards (ELSs). The time it should take, derived from an engineering method, for a trained worker or group of trained workers working at a normal pace to produce a described unit of work of an acceptable quality according to a specified method under specific working conditions. It is derived from a complete, objective analysis and measurement of the task. The generic methods which are used to develop ELSs are direct time study, predetermined time systems, work sampling, and standard time data. Note also that ELSs are not only attainable but also maintainable over a long period of time. ELSs include PF&D allowances which vary according to the task. (For example, a welder would have a different and higher fatigue allowance than one who monitors the operation of a machine.) - (2) Realization. The actual touch labor hours divided by the standard labor hours for the effort completed. - (3) Variance. Includes not only worker inactivity but also delays caused by material shortages, machine downtime, and improper scheduling. - (4) Type I Standard. A standard which is statistically valid. It may consist of actual time studies within the contractor's organization or buildup of published times for given operations. - (5) Type II Standard. Engineering estimates of the time required to perform a given task. The distinction between a Type I and Type II standard relates to the question of accuracy and verifiability. That is, a Type I standard for a given task is not necessarily lower than a Type II, even though the purpose of MILSTD 1567A is cost reduction, and the general direction is from Type II standards to Type I standards. (6) Touch Labor. "Hands-on" effort actually involved in the manufacturing (e.g., fabrication and testing) process. d. Significance to the Auditor. MILSTD 1567A should benefit the auditor in his/her evaluation of proposed labor costs and operations audits. Relative to improvement-curve applications, manufacturing improvement consists of two components. First, productivity increases as the contractor overcomes production difficulties in parts availability, scheduling, quality, and workmanship. Concurrently, product and methods improvement in tooling, portability, design, and factory layout further reduce labor hours. MILSTD 1567A earned-hour standards must reflect what labor is required to build the current product design with the existing production methods, assuming no production difficulties. Detailed variance analyses must identify causes of existing inefficiencies and
corrective action plans to overcome them must be prepared. When the contractor uses actual history to project labor hours, proper use of the variance analyses could eliminate existing inefficiencies in forward pricing. For example, a contractor may attribute the difference between actual and standard hours to parts shortages. The plan to improve the warehouse integrity by incorporating a bar-code material tracking system or by improving other operating practices would relate to a specific time frame. Thereafter, the curve should project only standard hours to reflect additional learning caused by design and methods improvements. If the contractor uses a theoretical unit standard to project labor hours, these same analyses will provide insight regarding the horizontal positioning of the theoretical unit. It is not logical that many contractors should be using the same unit standard. Each has different problems, methods of resolution, timetables, and rates of production. Whether new manufacturing processes or design changes are involved, the contractor is obliged to reconcile current conditions with those proposed. Differences, as explained in the contractor's rationale, should be evaluated for reasonableness. # **D-408** Material Cost Estimating Methods #### D-408.1 Overview As noted in D-101b, two major components of contractor proposals are labor and material estimates. Material is the cost element that is usually the easiest to estimate and check. It can normally be seen and touched in the end product. The material component may vary anywhere from 30 to 70 percent of the total cost depending on the type of contract (e.g., production, development, or research). - a. Material costs are normally divided into three major categories: direct, indirect, and burden. - (1) Direct material consists primarily of raw material, purchased parts, subcontracted items, and interdivisional transfers. The term "direct" is applied to this material since it can be readily identified in the end product. - (2) Indirect materials are those items necessary to produce the product but do not become a physical part of the end item. Materials such as lubricants, welding rods, and shop supplies are good examples. Because their direct usage levels are difficult to determine, indirect materials are usually allocated through indirect expense pools. - (3) Material burden is a term used to describe the indirect activity associated with converting purchased material into an end product. Costs related to material procurement and handling are collected in material burden centers. At smaller contractors, material burden may be included in general overhead expense pools rather than in a separate material overhead account. At larger contractors, material burden centers may be organized along functional lines that will separate rates for procurement, handling, etc. - b. The major categories of direct material are: - (1) Raw Material. Bulk or unfinished materials that require processing or are involved in manufacturing processes. Examples include sheet stock, castings, forgings, bar stock, wire, printed circuit board materials, epoxies, resins, paints, and solvents. - (2) Purchased Parts. A component, or subassembly, purchased as an off-the-shelf item which becomes an integral part of the product. - (3) Subcontracted Material. Material manufactured to specifications, drawings, or standards outlined in a subcontract. Subcontracted material may be low or high cost. Subcontracted low-cost material typically results from a contractor's inability to produce the part due to capacity constraints, quality problems, special processes, unique assembly techniques, or other manufacturing limitations. High-dollar subcontracted material items, by government contract law, require special treatment. When purchases of specific items exceed certain dollar thresholds, contractors are required to perform price analyses or audits. In some circumstances, they may arrange for an assist audit by DCAA at a subcontractor location. - (4) Interdivisional or Interplant Transfers. Materials that are purchased from another business unit of the contractor. - (5) Vendor Charges/Tooling. Costs incurred by a supplier to set up or prepare for production. These charges usually consist of production line set up and the fabrication of unique tools needed in manufacturing processes. Examples include drill fixtures, cable jigs, cable potting molds, and printed circuit artwork. - (6) Packing Material. Material required to package the product for safe delivery. Special packaging requirements are normally dictated by contractual provision and classified as direct material. - (7) Minor Material. Low-value items such as nuts, bolts, fasteners, and wire that are not cost effective to estimate in discrete quantities. Also known as line stock items, they are usually proposed as a percentage of direct material, or as a rate per manufacturing hour. They may, however, appear in detailed bills of material as individual line items. - (8) Freight. Estimated contractor delivery costs that are proposed either as a direct item or as a percentage of direct material. - (9) Other Direct Costs. These items are not readily identifiable as part of the product and are not subject to labor or material indirect expense loadings. Examples in- clude computer timesharing, technical publications, photographs, and blueprints. - c. Recurring and Nonrecurring Costs. Major material cost categories may also be described as recurring and nonrecurring costs: - (1) Recurring Costs. Those costs which are variable and are dependent upon the quantity produced. Examples of recurring costs are direct materials used in production, contractor set-up charges, and charges associated with tooling that must be accomplished with each production run. While not repeated on each unit manufactured, set-up charges are repetitive for each release and, as such, must be amortized into unit cost. Most vendors will amortize set-up charges before quoting unit prices; others itemize them separately. - others itemize them separately. (2) Nonrecurring Costs. Those costs which represent the fixed effort expended to produce an item regardless of quantity. Nonrecurring costs consist primarily of vendor tooling and engineering/testing charges. - (a) Vendor Tooling. Vendor or subcontractor costs to make tools needed to produce materials or fabricate parts. Vendor tooling can be categorized as either proprietary or accountable tooling. Proprietary tooling is the property of the vendor. Examples are forging dies, extrusion dies, patterns, and molds. Accountable tooling will eventually become the property of the purchaser or government. Tooling possession is obtained after the vendor no longer requires its use. Tooling costs are normally applicable to subcontracted parts, but may be encountered with purchased parts. - (b) Engineering/Testing Costs. These costs are associated with vendor design effort, development activities, qualification testing, or first article qualification. Testing charges frequently include the cost of components used in tests that either destroy or impair article function. Except for the eventual replacement of tooling because of wear, nonrecurring costs are onetime in nature and may suffice for several follow-on pricing actions. To avoid duplication, these costs should be shown separately and not included in the unit cost. #### **D-408.2 Estimating Methods** The methods employed to estimate material quantities and costs are largely dependent upon material type and information available at the time of proposal preparation. Material requirement data may range from detailed part lists to rough estimates based upon the available history on like items. Regardless of the method employed, estimates will be difficult to make and will be subject to significant error when a major portion of the materials represents unique items that have not been previously produced. Direct material constitutes the major portion of material cost and requires expert technical knowledge to estimate. IT data bases are used in developing models which may be used in parametric cost estimating systems, and for development of comparative---similar to---bills of material when discrete bills of material are not available. Indirect material and material burden are largely accounting issues. The general procedures associated with estimating direct materials are as follows: - a. Estimate quantity requirements. - b. Determine raw material requirements; convert measurements as necessary; and estimate actual yields. - c. Estimate current prices. - d. Adjust estimated prices for cost trends and quantities and project total cost. - e. Document procedures and methods utilized in the estimating process. ## D-408.3 Bills of Materials (BOM) Perhaps the most frequently used method of direct material estimating is the priced BOM. Most auditors are familiar with this mechanism and often use the BOM as a basis for sampling material costs. The auditor should evaluate both the unit prices reflected in a priced BOM and the material requirements aspect. At some contractor locations, there may be more than one type of BOM. The original bill of material, known as an engineering BOM, will list all of the parts required to produce the end products. In some cases, engineering may be unable to estimate certain actual-quantity requirements such as the length of a wire. To address detailed material requirements, manufacturing may develop a manufacturing BOM which is used as a manufacturing aid. The BOM is a comprehensive list of all parts required to produce an end item. At large contractors, BOMs are loaded into computer data bases which provide the capability to request information in many formats. Additional information such as description, when used, as well as item number and dollar value may also be contained in the data base. A BOM can be requested for an end product or any subassembly. The
two most common BOM sorts are as follows: - a. Part Number Ascending Order. This BOM is "exploded" and sorted by ascending part number showing total quantity required for each part of an end item. A detailed report may give further information including where the part is used. Figure D-4-1 illustrates a part number ascending order BOM. - b. Assembly/Subassembly "Christmas Tree". This BOM is hierarchical and lists major assemblies followed by all levels of subassemblies. The assembly/subassembly BOM is often referred to as a "Christmas Tree" BOM because of its pyramidal or Christmas-tree shape. Figure D-4-2 illustrates the assembly/subassembly BOM. Figure D-4-3 is another representation of the assembly/subassembly BOM. This representation is often referred to as an "indented" BOM. Each format has advantages and disadvantages. Hierarchical BOMs permit tracing material assemblies to drawings, and accounting for the use of each part. Hierarchical BOMs do not communicate total part requirements; therefore, sampling is difficult because other formats may not be available. Part number ascending order BOMs disclose total requirements and pricing, but do not describe product organization and composition; therefore, auditors will normally have difficulty in determining actual part requirements. Regardless of the format employed, the BOM is an essential tool in validating material requirements and serves as an intermediate vehicle in tracing requirements to original drawings. The drawings disclose part listings and show how the parts are integrated to form completed stages or finished products. Frequently, an estimating department will price a BOM to be used as sup- D32 D-408 January 2003 porting data. With the exception of tooling and other minor additives, a priced BOM should be comprehensive. Costs not shown in the bill of material can be verified through vendor tooling quotes or historical analyses. #### **D-408.4 Routing Sheets** A routing sheet is usually a process description showing discrete manufacturing operations and associated times. Some routing sheets will also disclose material quantity, tools, fixtures, and labor standards. They may be referred to as operations sheets. Routing sheets are a main source of labor information and are also discussed in the labor section (D-407.2h). Routings may be used as a substitute for BOMs for costestimating purposes. Care should be exercised when routing sheets are used in conjunction with BOMs to ensure that costs are not duplicated. Figure D-4-4 presents an example of the routing for the part number 8876902. In this example, there is only one line item, RS3000197, which is listed under product structure. # **D-408.5 Engineering Drawings** Material requirements are normally determined from engineering drawings. To properly evaluate proposed material quantities, it is important that the auditor understand engineering drawings. An engineering drawing graphically shows the configuration of a part or assembly. It can be a sketch drawn by a draftsman or generated by a Computer-Aided Design (CAD) system. The trend at most contractors is toward CAD. With CAD, operators can develop complete drawings using a light pen. A good feature of CAD is that drawings can be recalled from computer memory and changed with minimal effort. Regardless of method, drawings are essential in all phases of design and manufacturing. Typically, engineering drawings are classified as either level 1, 2, or 3. These levels represent a natural progression from conceptual design to production. Level 1 drawings address conceptual and development designs; level 2 drawings are con- cerned with production prototypes and limited production quantities; and level 3 drawings are production oriented. A drawing level or various combinations of levels may be established by a contractor, or specified in a contract. The drawing level and quantities required to satisfactorily depict product function and material requirements are determined by design complexity, product sophistication, and engineering judgment. Drawings illustrate and provide essential information needed to design and manufacture a product including: - (1) physical characteristics, - (2) dimensional and tolerance data, - (3) critical assembly sequences, - (4) performance ratings, - (5) material identification details, - (6) inspection tests, - (7) evaluation criteria, - (8) calibration information, and - (9) quality control data. All product components should be supported by engineering drawings. All drawings should be tied to the end item drawing with major subassemblies and components identified. Drawings should be available to the lowest level unit part. Normally, engineering drawings use the hierarchy or level concept. Each assembly or subassembly will have drawings identifying all components and additional levels of subassemblies that constitute the upper-tier product. For complex projects, as many as 10 levels of drawings may be used, beginning at the component or manufactured part level and culminating in an assembly or subassembly. Manufactured components may have material reference drawings which further define forging, casting, and similar requirements. In short, all parts required to manufacture an end-item will be shown in drawings along with their relationship to the next higher-level drawing. Each drawing should contain certain basic information which can be used by the auditor to assess material requirements. Figure D-4-5 is an example of an engineering drawing. # **D-408.6 Material Allowances** Material allowances, also known as material adjustment factors, are the differ- January 2003 D-408 ence between the product material requirement and the actual material consumed during manufacturing. The material-allowance factor represents allowances for scrap, attrition, rework, and other factors that influence material cost and cannot be precisely estimated because of incomplete BOMs and future design changes in subcontractor delivery requirements. Contractors have used various approaches to estimate material allowances. Some of these approaches are acceptable, while others are questionable. Material allowances can be applied to an individual part and be included in the BOM quantity. In other cases, it may be applied as a lump sum to the total material requirement. The basis of these adjustment factors should be closely scrutinized to ensure they are reasonably valid and that there are no duplications. Historical evidence should be available to support the factors. However, the existence of history should not be considered as automatic evidence of validity because the previous losses may have occurred under different circumstances. Factors frequently used in pricing actions should be periodically reviewed under separate assignments. Section 9-407 further addresses material-allowance factors. - a. Scrap is defective material that cannot be used in its present condition. Scrap may result from operator error, unacceptable vendor material, handling damage, or out-of-control processes (such as poor heat treatment). Scrap allowances should normally be based on historical data. Reduction in scrap should be expected as learning occurs. - b. Process loss is the difference between the amount of material required at the beginning of a process and the final amount used for the finished part. In comparison, scrap loss is defective material while process loss is the material lost during the manufacturing process. Process loss may be estimated using an overall factor or separate factors for major sub-elements such as trim loss, chip loss, and excess casting material. BOM quantities for items manufactured from raw material such as sheet metal, bar stock, and composite frequently are adjusted to include process loss factors. Also note that raw-material items like sheet metal and bar stock are generally only available in certain industrial standard sizes and lengths. As a result, estimating factors are frequently applied to the finished material requirement to convert from industry standards to proposed sizes and lengths in order to determine the amount of material to be purchased. - (1) Process Trim Loss. This occurs when a rough cut is made from the standard-size purchased material. Because the dimensions of the rough cut are not perfectly compatible with that of the standard size, the leftover material is commonly known as process trim loss or residual loss. In some instances, it can amount to a large portion of the material required for the end product. - (2) Process Machining Loss. This is the difference between the rough-cut size and final size. The rough cut part may be bored, milled, ground, threaded, or processed in some other way to create a final part. Process machining and trim losses are often figured together and added to the required raw material quantity. Scrap loss is added as a separate factor. - c. Inventory Adjustments. Physical inventory normally varies from the inventory of record. This is a result of theft, carelessness, or miscounting. Although the variance can be either positive or negative, it is usually negative and known as inventory shrinkage. - d. Inventory Obsolescence. Parts become obsolete in storage because of changes in their physical characteristics. Normally, it is not economically feasible to restore these parts to the required condition. Some parts have a specified shelf life and cannot be used even though they may look visually acceptable. Other parts go through physical deterioration because of excessive heat, humidity, and mishandling. Parts with excessive rust may be more expensive to clean and restore than to replace. Certain cables, electronic components, and chemicals have shelf lives and are governed by military standards. These parts are disposed of because of expected deterioration. - e. Engineering Obsolescence. Material and parts may be become obsolete because of design changes. These design changes are a
consequence of parts testing, failure D34 January 2003 D-408 in field use, and unanticipated user requirements. Engineering changes will result in material not being used on the product. This factor estimates the cost of material that can no longer be used. - f. Engineering Design Growth. Designers often fail to fully comprehend the technical requirements of a proposed product. As a complex program matures and develops, material content will often increase. The costs estimated by this factor should diminish as the program matures. - g. Attrition. This is the allowance established to compensate for loss, breakage, floor shortages, and other damage such as solder burns. The allowance is often used to finance the original overbuying or rebuying of material. - h. Other Allowances. Contractors use other allowance factors besides the attri- tion factor, and each factor needs to be carefully evaluated on its own merit. Material allowance factors may be offset by salvage income resulting from the sale of scrap or obsolete items. Salvage credits can be substantial, particularly for items categorized as obsolete according to DoD standards. The cost of material can be summarized as: Total Cost = Material Cost/Item + (Material Allowances Salvage) # **D-408.7 Estimating Raw Material** The process of estimating raw material can be complex. To explain the process, a sheet metal part is illustrated in Figure D-4-6. # Figure D-4-1 Ascending Order --- Bill of Material "Exploded" for D-5930 Pedestal Drive Assembly | | <u>Part</u> | | | | | | |-------------|----------------------|-------------|------|--------|------|--------| | <u>Part</u> | Description | Where used | Seq. | Quant. | Code | Policy | | 4093 | Pinion | D-3090 | 2 | 1 | P | 2 | | 5065 | Bearing | D-5930 | 4 | 2 | P | 3 | | D-3056 | Retaining Ring | D-3090 | 3 | 1 | P | 4 | | D-3075 | 2," Bar Stock | D-3095 | 1 | 2 | P | 4 | | D-3095 | Shaft | D-3090 | 1 | 1 | A | 1 | | D-3090 | Shaft/Pinion Asm | D-5930 | 6 | 1 | A | 1 | | D-3740 | 2 X 8 Back Bracket | D-5725 | 1 | 1 | P | 2 | | D-3741 | 1 7/8" X 8 ft. Brkt. | D-5725 | 2 | 1 | P | 2 | | D-3742 | 1/8" Rubber Seal | D-5725 | 3 | 1 | P | 2 | | D-5725 | Bracket Assembly | D-5930 | 5 | 1 | A | 1 | | D-5925 | Pillow Blk. Base | D-5930 | 2 | 1 | P | 2 | | D-5926 | Pillow Blk. Cap | D-5930 | 1 | 1 | P | 2 | | D-9002 | 3/8" Nut | D-5725 | 4 | 2 | P | 4 | | D-9003 | 3/8" Washer | D-5725 | 5 | 2 | P | 4 | | D-9004 | 3/8 X 4 1/2 bold | D-5725/5930 | 3/6 | 6 | P | 4 | Figure D-4-2 Assembly/Subassembly --- Bill of Material Figure D-4-3 Assembly/Subassembly ---''Indented'' Bill of Material | | | | Where | | | Comm. | | |-------|-------------|---------------------|--------|------|--------|-------|--------| | Level | <u>Part</u> | Description | Used | Seq. | Quant. | Code | Policy | | 0 | D-5930 | Pedestal Dr. Asm. | | | 1 | A | 1 | | 1 | 5065 | Bearings | D-5930 | 4 | 2 | P | 3 | | 1 | D-3090 | Shaft/Pinion Asm. | D-5930 | 6 | 1 | A | 1 | | 2 | 4093 | Pinion | D-3090 | 2 | 1 | P | 2 | | 2 | D-3056 | Retaining Ring | D-3090 | 2 | 1 | P | 4 | | 2 | D-3095 | Shaft | D-3090 | 1 | 1 | M | 2 | | 3 | D-3075 | 2 2/4" Bar Stock | D-3095 | 1 | 2 ft | P | 4 | | 1 | D-5725 | Bracket Asm. | D-5930 | 5 | 1 | A | 1 | | 2 | D-3740 | 2 X 8 Bk. Bracket | D-5725 | 1 | 1 | P | 2 | | 2 | D-3741 | 1 7/8 x 8 FT. Brkt. | D-5725 | 2 | 1 | P | 2 | | 2 | D-3742 | 1/8" Rubber Seal | D-5725 | 3 | 1 | P | 2 | | 2 | D-9002 | 3/8" Nut | D-5725 | 4 | 2 | P | 4 | | 2 | D-9003 | 3/8" Washer | D-5725 | 5 | 2 | P | 4 | | 2 | D-9004 | 3/8 X 4 1/2 Bolt | D-5725 | 6 | 2 | P | 4 | | 1 | D-5925 | Pillow Bl. Base | D-5930 | 2 | 2 | P | 3 | | 1 | D-5926 | Pillow Bl. Cap | D-5930 | 1 | 2 | P | 2 | | 1 | D-9004 | 3/8 X 4 1/2 Bolt | D-5930 | 3 | 4 | P | 4 | Figure D-4-4 Example of a Routing Sheet | | | | | | Σ | - | | - | | 7 | | | - | _ | _ | _ | |--|-------------------------|-----------------------|---------------------------------------|-------------------------|---------------------|--|--|---------------------------------------|---------|----------------------|--|--|---|----------------|-------|-----------------------| | | | | | | M/MC
RAI: | 1.0 | 0.1 | 1.0 | | 0.5 | | 1.0 | 1.0 | 0.5 | 1.0 | 0.1 | | 1
/25/86 | | | | | PROD
STD | 050 | 250 | 200 | | 200 | | 2250 | 300 | 001 | 001 | 230 | | 1 OF
ATE 9, | | | | | Т | s | S | S | z | ш | z | ш | ш | s | s | s | | SENO
INT D | | | | | S.U.
STD | 020 | 050 | 250 | | 020 | | 050 | 020 | 050 | 050 | 020 | | PR | | | | | Т | ш | ш | S | z | ш | z | ш | ш | Ε | ш | ы | | | | [| | | SPEED | - | | 250 | | | | | | | | | | PART NUMBER RT CODE 8876-902 A 1 PRINT DATE PART DESCRIPTION PROGRAM DESCRIPTION MIN-MAX | | | | FEED | | | 2.00 | | | | | | | | | | | | N MIN-MAX | 1 – 25 | DIMENSIONS | 12 1/4 × 19 1/2 × 1.197 | T/F/G DESCRIPTION | LAYOUT SHEET | TEMPLATE | DRILL JIG | | MIL, SPEC, SHEET | | | MIL SPEC. SHEET | | | MIL SPEC. SHEET | | | PTIO | z | IME | 2 1/4 | QT | - | - | - | | - | | | - | | | - | | ROUTING SHEET | PROGRAM DESCRI | TARGET STATION | T DESCRIPTION I | 4340 SHEET STEEL | T/F/G NUMBER | 8876902 8 01 | 8876902 T 01 | 8876902 J 01 | | MIL-H-6875 M235 | | | MIL-P-16232 M280 | | | MIL- M390 | | | E DATE PART DESCRIPTION | 09/24/86 ARMOUR PLATE | PRODUCT STRUCTURE PRODUCT DESCRIPTION | R83000197 4340 SHE | PROCESS DESCRIPTION | MARK AND SHEAR PER
LAYOUT SHEET.
14 PIECES PER SHEET | DRAW AND CUT TO SHAPE
DEBURR EDGES & SHARP
CORNERS | USING JIG DRILL 7
HOLES AND DEBURR | INSPECT | HEAT TREAT PER SPEC. | INSPECT FOR HARDNESS
TO ROCKWELL C 54 | TEMPER FOR 2 HOURS BY
HEATING TO 325 F + 20 | MANGANESE PHOSPHATE
COAT PER MIL SPEC.
TYPE M CLASS 2 | VAPOR DEGREASE | PRIME | PAINT GREEN PER SPEC. | | ODE | - | | | | NON
WCN | 4012 | 4013 | 4020 | 4001 | 2005 | 2020 | 3864 | 3870 | 3910 | 3930 | 3931 | | RT C
AI | BY | KP | R.MAT.CODE. | | DEPT | 471 | 472 | 472 4 | 455 4 | 473 | 455 | 475 | 475 | 475 | 475 | 475 | | MBER | NO | 12A | R.MA | RSSA | NO L | 010
020
030 | 010
020
030 | 010 | 010 | 010 | 010 | 010 | 010
020
030 | 010 | 010 | 010 | | PART NU
8876 902 | CHANGE | 8876 902A | QUANTITY | 19.450 RSSA | OPER 1 | 0010A1 | 0020A1 | 0030A1 | 0035AI | 0040A1 | 0045A1 | 0050A1 | 0060A1 | 0000 | 0800 | 0600 | **DCAA** Contract Audit Manual #### Explanatory notes to Figure D-4-4 - (a) Part Number -- Identifies the processes described on the routing sheet to a specific part or assembly. There may be alternate routings for a part number if different types of processing are potentially required. The cost estimator should fashion estimates based on prime routing, or the routing which is most likely to be used. - (b) RT Code -- Code used to indicate whether the routing is primary (e.g. A1) or alternate (e.g. B1, C1). - (c) Change Number -- This number normally refers to an engineering change notice (ECN) number. It relates directly to a change on a drawing. - (d) By -- Initials of the person who made the last change to the routing sheet. - (e) Issue Date -- The day the last change was made. This date may be different from the ECN date. Changes in methods, standard, tooling, etc. may be responsible for changes in the issue date. - (f) Part Description -- A brief description, usually the name of the part. - (g) Program Description -- Indicates the main program or the assembly where this part will be used. - (h) Min-Max -- Describes an optimal quantity range for the processes described on the routing sheet. If the shop order quantity outside the indicated range, there may be a more efficient method of producing the part. - (i) Quantity -- Represents an amount of material that will be required to fabricate one unit. Quantity may be expressed in pounds, cubic inches or other units of measure. Sometimes, the units will not make sense by themselves. Familiarity with raw material codes and product structures will be required to interpret the quantity. - (j) R. Mat. Code -- Contains an abbreviation for the specific type of raw material used. In this example, the code is RSSA. "R" represents raw material, "SS" is for sheet steel, and "A" could mean a special kind of sheet steel, indicate a buyer code, or even a vendor. - (k) Product structure -- Indicates the next level part number required to manufacture the part. In this example, there is only one part number, RS3000197, which is a particular type and gauge of raw sheet steel. - (1) Product Description -- A name for the part number identified in product structure. - (m) Dimension -- Indicates the size of raw material required at the start of the manufacturing process. Normally, this space is used for raw material only. In some cases, it can be used to give more information about the components. - (n) Operation Number -- Identifies the work breakdown or operations required to produce the part. The numbers are ascending, and indicate the order in which the work must be performed. In this example, all operations are identified by a six character code. The first four characters specify the sequence, while the last two characters differentiate between primary and alternate operations. In the example, primary operations are identified by the code AI. Secondary operations could be identified by other codes such as B1 and C1. Primary and alternate processes may appear on the same routing sheet. - (o) Sequence Number -- Used in updating routing sheets. - (p) Department Number -- Identifies the principal department where work is to be performed. - (q) Work Center Number (WCN) -- A number identifying the work station where the operation is to be performed. It can refer to a machine, bank of
machines, or an assembly bench. Sometimes, department and machine numbers are combined to form a WCN. - (r) Process Description -- Describes the process and gives instructions for operators and supervisors. - (s) T/F/G/ Number -- This number identifies a tool (T), fixture (F) or gauge (G) required to perform an operation. A tool number could be a physical tool, numerical control tape number, or an instruction sheet. - (t) QT -- Quantity of tools required to perform an operation. - (u) T/F/G Description -- Description of tools, fixtures, and gauges. # Figure D-4-4 - (v) Feed -- Indicates how fast the material should be advanced. Normally, feed is expressed in inches per minute, or inches per revolution. - (w) Speed -- RPM (revolutions per minute) at which a machine must operate to produce the part. - (x) T, E, S, and N -- T indicates type of labor standard used for set up and production; E shows standard was estimated; S indicates standard was studied or engineered; and N stands for nonstandard operation, or no labor standard (i.e., labor may be indirect or a - (y) S.U. Std (Set-up Standard) -- Staff-hours required to setup an operation for production. The alpha character in the preceding column indicates whether the standard was estimated or engineered. - (z) Prod. Std. (Production Standard) -- Staff-hours required to perform the operation. The preceding column indicates if the standard is estimated or engineered. Standards are normally in hours per piece. They can also represent time required to produce a lot (e.g. 100 pieces). In this example, the operation is performed on a per piece basis. Hours are rounded to three decimal places. Care should be taken to ensure that estimators do not further round the numbers which may produce overstated estimates. - (aa) M/MC Rat. (Man/Machine Ratio) -- Indicates number of people required to perform a task. A operator/machine ratio of .500 means that an operator is required to operate two machines at the same time. A ratio of 2.00 means that the task requires two operators. - (ab) M -- Indicates number of machines available, and is used primarily as a scheduling tool. Figure D-4-5 Example of an Engineering Drawing --- Explanatory notes to Figure D-4-5: - (a) Drawing Number/Part Number -- All drawings are numbered by part or assembly number. In some cases, a part drawing may have more than one page. A drawing may depict more than one variation of a basic part. - (b) Sheet Number/Continuation Sheet -- Depending upon complexity, any number of sheets may be necessary to show the drawing for a particular item. - (c) Drawing Description -- A brief description of the part. - (d) Dimensions -- Indicates whether the metric or English system was used to prepare the drawing. A conversion table may be included on the drawing. - (e) Scale -- Shows scale used for preparing the drawing. All drawings are drawn to scale to give correct relationships to other components on the drawing. - (f) Tolerances -- Design engineers establish ranges for dimensions and other factors so that a manufactured part will function as intended. Tight tolerances result in more costly manufacturing processes. - (g) Size -- All drawings are standardized into five sizes for economical storage and reproduction purposes. Sizes range from A to E, with E being the largest. Most contractors store drawings on microfilm attached to punched cards which show part number, description, and drawing size. - (h) Revisions -- The revision log lists all changes from initial release and onward. It identifies Engineering Change Notice (ECN) numbers, description, dates, and personnel making the change. There may be ECNs in process which may affect the drawings. Such drawings changes will be incorporated by the drafting department after completion of the approval process. All parts must meet the latest change specifications unless a waiver is obtained from the customer. - (i) Material List -- Also known as a bill of material. The parts list identifies all components required to produce the part shown on the drawing by item number. Item numbers cross referenced to a parts list can be shown on the drawing or on a separate sheet. The parts list further provides additional information such as drawing numbers, quantity, part description, required materials, and references to the next higher level of assembly. Inexperienced users will have to carefully examine drawings to determine material requirements. Occasionally, parts lists may not be included on the drawings or associated documentation. Additionally, some parts may be duplicated on the next drawing level. - (j) Type of Material -- Specifies materials to be used and/or alternatives. This reference is very important in verifying the "quality" of proposed parts. The majority of materials used by contractors will be military standard materials. - (k) Notes -- Used by the design engineer to communicate special nonstandard requirements or precautions. - (l) Type of Finish -- A symbol and/or number indicating the degree of smoothness (finish) required for different surfaces. - (m) Security Classification -- Drawings may have security classifications. Figure D-4-6 Example of a Raw Material Drawing **DCAA Contract Audit Manual** # Explanatory notes to Figure D-4-6: - (a) Process machining allowances are added to the designer's finished dimensions on the drawing. In this example, the largest part dimensions are 11.96" X 19.02" X .197" which equals 44.81 cubic inches. The manufacturing engineer knows that he will need to add at least 1/4" to two sides of the part. This allowance is based on the individual estimator's judgment and experience. Therefore, the amount of material specified is 12.25" X 19.5" X 197" = 47.06 cubic inches. The process machining allowance for this case amounts to 5.0 percent. - (b) Process Trim Allowances are calculated using a method similar to the one described below. #### Example Assumptions: Raw material is available only in 4' X 8' (48" X 96") sheets. The dimensions of each piece are 12.25" X 19.5" (determined by adding 5 percent process machining allowance). The contractor has calculated that 14 pieces can be obtained from each sheet. #### Calculations: Amount of material per piece = 64.84 cubic inches ((48" X 96" X .197") / 14) Trim Allowance = 17.78 cubic inches (64.84 - 47.06) Trim Allowance as a percentage = 37.8 percent (17.78 / 47.06) #### Potential Savings: If 17 pieces per sheet could be obtained with minimal add-on labor cost, the amount of material per piece could be reduced to 53.4 cubic inches. This equates to a savings of 17.6 percent per piece when compared to the proposed amount ((64.84 - 53.4) / 64.84). (c) Unit of Measure Conversion. Sometimes, raw material is expressed in different units of measure. For example, steel is normally purchased and sold by weight (pounds). In the manufacturing environment, it is measured in cubic inches. Conversion is fairly simple and can be accomplished by applying factors. To convert 64.84 cubic inches of steel to pounds, multiply by the factor .281 to obtain the amount (18.22 pounds). Some estimates may use rounded factors which may produce overstated amounts. For example, if .281 were rounded to .3, an overstatement of 6.8 percent would result.